Deutsch
Quelltexte/ Codesnippets

Gutartige Differentialgleichungssysteme genau lösen: Runge-Kutta-Fehlberg RKF45

 

p.specht

... kann man z.B. mit dem Runge Kutta Fehlberg -Algorithmus (RKF45). Das Verfahren nutzt Schrittweitensteuerung nach dem Deutschen Mathematiker Erwin Fehlberg [Fehlberg 1970], und schafft durch Nutzung von XProfan's Double-Precision Arithmetik eine Genauigkeit von immerhin fünf Kommastellen, was bei solchen "expliziten" Verfahren absolut nicht selbstverständlich ist!

Hinweis: Bei sog. "steifen" (= widerspenstigen) Problemen wird die Sache allerdings sehr sehr langsam, dazu gibt es dann bessere Verfahren, etwa nach dem Prädiktor-Korrektor-Prinzip. Dazu an anderer Stelle mehr ...

Ich darf hier ein von Algol nach Fortran über QBasic nach C++ nach Pascal nach XProfan 11.2a übersetztes Standardstück der Numerischen Mathematik als DEMO zum privaten experimentieren OHNE JEDE GEWÄHR präsentieren, mit dem z.B. ein in den ersten 20 errechneten Sekunden realistisches Doppelpendel-Verhalten berechnet werden könnte (Mit Profan leider nicht in Echtzeit, aber nach 20 Sekunden schlägt die Chaostheorie mit ihrem Schmetterlingseffekt ohnehin voll zu!). Berechnet werden drei Test-Differentialgleichungen unterschiedlicher Komplexität. Die korrekten Ausgabewerte sind im Programmtext zu finden.
'RUNGE KUTTA der Ordnung 4 mit Schrittweitensteuerung der Ordnung 5 nach FEHLBERG"
'***********************************************************************
'* (DEMO ONLY!) 2014-05 Transcribed to XProfan 11 by P.Specht, Vienna  *
'* ALL COPYRIGHTS BY THE RESPECTIVE OWNERS!  RECHTE DRITTER BEACHTEN!  *
'***********************************************************************
'*    Integrate a System of Ordinary Differential Equations By the     *
'*         Runge-Kutta-Fehlberg method (double precision)              *
'* ------------------------------------------------------------------- *
'*    REFERENCE:  H A Watts and L F Shampine,                          *
'*                Sandia Laboratories,                                 *
'*                Albuquerque, New Mexico.                             *
'* ------------------------------------------------------------------- *
'* SAMPLE RUN:                                                         *
'*                                                                     *
'* PROGRAM TRKF45                                                      *
'* Demonstrate the RKF45 ODE integrator.                               *
'*                                                                     *
'* TEST01                                                              *
'* Solve a scalar equation:                                            *
'*                                                                     *
'*  Y' = 0.25 * Y * ( 1 - Y / 20 )                                     *
'*                                                                     *
'*       T          Y       Y_Exact     Error                          *
'*                                                                     *
'*    0.00000    1.00000    1.00000    0.0000000                       *
'*    4.00000    2.50321    2.50322   -0.0000087                       *
'*    8.00000    5.60007    5.60009   -0.0000193                       *
'*   12.00000   10.27774   10.27773   -0.0000069                       *
'*   16.00000   14.83682   14.83683   -0.0000038                       *
'*   20.00000   17.73017   17.73017   -0.0000084                       *
'*                                                                     *
'* TEST02                                                              *
'* Solve a vector equation:                                            *
'*                                                                     *
'*  Y'(1) =   Y(2)                                                     *
'*  Y'(2) = - Y(1)                                                     *
'*                                                                     *
'*       T            Y1            Y2                                 *
'*                                                                     *
'*    0.00000      1.00000       0.00000                               *
'*    0.52360      0.86603      -0.50000                               *
'*    1.04720      0.50000      -0.86603                               *
'*    1.57080      0.00000      -1.00000                               *
'*    2.09440     -0.50000      -0.86603                               *
'*    2.61799     -0.86603      -0.50000                               *
'*    3.14159     -1.00000      -0.00000                               *
'*    3.66519     -0.86603       0.50000                               *
'*    4.18879     -0.50000       0.86603                               *
'*    4.71239     -0.00000       1.00001                               *
'*    5.23599      0.50000       0.86604                               *
'*    5.75959      0.86604       0.50001                               *
'*    6.28319      1.00002       0.00000                               *
'*                                                                     *
'* TEST03                                                              *
'* Solve a vector equation:                                            *
'*                                                                     *
'*  Y'(1) = Y(2)                                                       *
'*  Y'(2) = Y(3)                                                       *
'*  Y'(3) = Y(4)                                                       *
'*  Y'(4) = Y(5)                                                       *
'*  Y'(5) = (45 * Y(3) * Y(4) * Y(5) - 40 * Y(4)^3) / (9 * Y(3)^2)     *
'*                                                                     *
'*       T          Y1         Y2         Y3         Y4         Y5     *
'*                                                                     *
'*    0.00000    1.00000    1.00000    1.00000    1.00000    1.00000   *
'*    0.13636    1.14610    1.14609    1.14587    1.14068    1.05604   *
'*    0.27273    1.31354    1.31340    1.31128    1.28532    1.05248   *
'*    0.40909    1.50538    1.50460    1.49612    1.42333    0.95209   *
'*    0.54545    1.72508    1.72223    1.69844    1.53859    0.71111   *
'*    0.68182    1.97638    1.96840    1.91370    1.60897    0.28809   *
'*    0.81818    2.26328    2.24438    2.13400    1.60781   -0.33918   *
'*    0.95455    2.58984    2.55011    2.34770    1.50801   -1.15027   *
'*    1.09091    2.96003    2.88369    2.53985    1.28946   -2.06094   *
'*    1.22727    3.37739    3.24105    2.69376    0.94820   -2.92046   *
'*    1.36364    3.84475    3.61589    2.79372    0.50379   -3.54302   *
'*    1.50000    4.36396    4.00000    2.82843   -0.00000   -3.77124   *
'* ------------------------------------------------------------------- *
'*                                                                     *
'*                           Basic Release 1.1 by J-P Moreau, Paris.   *
'*                                      (www.jpmoreau.fr)              *
'*   Release 1.1: added test #3.                                       *
'***********************************************************************
'* Source: Homepg. of J-P. Moreau: DIFFERENTIAL EQUATIONS IN BASIC.htm *
'* ------------------------------------------------------------------- *
'* All Copyrights (C) 2014- are attributed to their respective Owners  *
'***********************************************************************
Windowstyle 24:randomize:font 2
Window 0,0-%maxx,%maxy-40:cls co()
var xx&=width(%hwnd)\2:var yy&=height(%hwnd)\2
set("decimals",17):set("numwidth",24)

proc co

    return rgb(200+rnd(56),200+rnd(56),200+rnd(56))

endproc

Declare R$,num&,neqn&,F$,G$,yexact!,istep&,t!,remin!,maxnfe&,eps!
declare mflag&,jflag&,kflag&,savr!,save!,rer!,dt!,init&,kop&,a!,b!
declare h!,i&,k&,nfe&,toln!,tol!,ypk!,tmp!,ep!,IA&,IB&,ISign&,sign!
declare kop!,IOUTPUT&,scale!,ae!,IHFAILD&,hmin!,ch!
declare eedet!,eeoet!,et!,ee!,eecet!,xmax!,esttol!,s!
var abserr! = 0.000001
var relerr! = 0.000001
var iflag& = 1
var tstart! = 0.0
var tstop! = 20.0
var nstep& = 5
var tout! = 0
var tt! = tout!
var NEQ& = 5' Maximum number of equations
def !Pi Pi()
var EPSILON! = val("2.22E-16")' Small number
Declare y![NEQ&], yp![NEQ&]'auxiliary variables used by 400
Declare yy![NEQ&], yyp![NEQ&]'work space used by successive calls to 1000 and 2000
Declare f1![NEQ&], f2![NEQ&], f3![NEQ&], f4![NEQ&], f5![NEQ&]
F$ = "%g"'"####0.0########"
G$ = "%g"'"####0.0##############"
CLS co()
PRINT "\n PROGRAM RKF45 AND TRKF45 FOR TESTING RKF45  \n\n"
PRINT " Demonstrates the RKF45 ODE integrator\n"
'call test01
S600
Print "\n Press any key to continue... ",:beep:Waitinput:cls co()
'call test02
S700
Print "\n Press any key to continue... ",:beep:Waitinput:cls co()
'call test03
S800
Print "\n Press ENTER to end the PGM. ",:beep:Input R$
END'of Main Pgm
S400:
'{ User defined system of Differential Equations
' Subroutine S400f :parameters tt!, yy!, yyp!
'--------------------------------------------------------------------
'  Fn evaluates the derivative for the ODE (TESTS #1 and #2).
'--------------------------------------------------------------------

IF num& = 1' Test-No.

    yyp![1] = 0.25 * yy![1] * (1.0 - yy![1]/20.0)

ELSEIF num& = 2

    yyp![1] = yy![2]
    yyp![2] = -1*yy![1]

ELSE

    yyp![1] = yy![2]
    yyp![2] = yy![3]
    yyp![3] = yy![4]
    yyp![4] = yy![5]
    yyp![5] = (45*yy![3]*yy![4]*yy![5] - 40*yy![4]*sqr(yy![4])) / (9*sqr(yy![3]))

ENDIF

RETURN
S500:
'--------------------------------------------------------------------
'  function yexact(tt)
'  YEXACT evaluates the exact solution of the ODE (For TEST #1).
'--------------------------------------------------------------------
yexact! = 20/(1+19*EXP(-0.25*tt!))
RETURN
'}

proc S600

    '--------------------------------------------------------------------
    '  TEST01 solves a scalar ODE in double precision.
    '--------------------------------------------------------------------
    num& = 1'example #1
    neqn& = 1'one equation
    PRINT " TEST01 \n\n"
    PRINT " Solve a scalar equation:"
    PRINT
    PRINT "  Y' = 0.25 * Y * ( 1 - Y / 20 )\n\n"
    PRINT
    abserr! = .000001
    relerr! = .000001
    iflag& = 1
    tstart! = 0.0
    tstop! = 20.0
    nstep& = 5
    tout! = 0
    y![1] = 1
    PRINT "       T                 Y                         Y_Exact                  Error                   "
    PRINT
    tt! = tout!: GOSUB "S500"'calculate yexact(tout)
    PRINT " ";format$(F$, tout!),
    PRINT tab(26);format$(F$,y![1]),
    PRINT tab(52);format$(F$,yexact!),
    PRINT tab(77);format$(G$,y![1] - yexact!)

    Whileloop nstep& : istep&=&Loop

        t! = ((nstep& - istep& + 1) * tstart! + (istep& - 1) * tstop!) / nstep&
        tout! = ((nstep& - istep&) * tstart! + (istep&) * tstop!) / nstep&
        'Bracket error in French source corrected!
        'call rkfs (neqn,y,t,tout,relerr,abserr,iflag,yp,h,f1..f5,savr,save,nfe,kop,init,jflag,kflag)
        GOSUB "S2000"
        tt! = tout!
        GOSUB "S500"' calculate yexact(tout)
        PRINT " ";format$(F$, tout!),
        PRINT tab(26);format$(F$, y![1]),
        PRINT tab(52);format$(F$, yexact!),
        PRINT tab(77);format$(G$, y![1] - yexact!)

    endwhile

endproc

Proc S700

    '--------------------------------------------------------------------
    '  TEST02 solves a vector ODE (Ordinary Differential Equation)
    '--------------------------------------------------------------------
    num& = 2'Example #2
    neqn& = 2'2 equations
    PRINT
    PRINT " TEST02\n"
    PRINT " Solve a vector equation:"
    PRINT
    PRINT "  Y'(1) =   Y(2)"
    PRINT "  Y'(2) = - Y(1)\n\n"
    abserr! = 0.000001
    relerr! = 0.000001
    iflag& = 1
    tstart! = 0
    tstop!  = 2*PI()
    nstep& = 12
    tout! = 0
    y![1] = 1
    y![2] = 0
    PRINT
    PRINT "     T                    Y1                      Y2                          "
    PRINT
    PRINT " ";format$(F$, tout!),
    PRINT tab(26);format$(F$, y![1]),
    PRINT tab(52);format$(F$, y![2])

    Whileloop nstep&

        istep&=&Loop
        t! = ((nstep& - istep& + 1) * tstart! + (istep& - 1) * tstop!) / nstep&
        tout! = ((nstep& - istep&) * tstart! + (istep& * tstop!)) / nstep&')
        GOSUB "S2000"'call rkfs (neqn,y,t,tout,relerr,abserr,iflag,yp,h,f1..f5,savr,save,
        'nfe,kop,init,jflag,kflag)
        PRINT " ";format$(F$, tout!),
        PRINT tab(26);format$(F$,y![1]),
        PRINT tab(52);format$(F$,y![2])

    endwhile

EndProc

Proc S800

    '--------------------------------------------------------------------
    '  TEST03 solves a vector ODE.
    '--------------------------------------------------------------------
    num& = 3'Example #3
    neqn& = 5'5 equations
    PRINT "\n TEST03 \n"
    PRINT " Solve a vector equation: \n"
    PRINT "  Y'(1) = Y(2)"
    PRINT "  Y'(2) = Y(3)"
    PRINT "  Y'(3) = Y(4)"
    PRINT "  Y'(4) = Y(5)"
    PRINT "  Y'(5) = (45 * Y(3) * Y(4) * Y(5) - 40 * Y(4)^3) / (9 * Y(3)^2) \n"
    abserr! = .000001
    relerr! = .000001
    iflag& = 1
    tstart! = 0
    tstop!  = 1.5
    nstep& = 11
    tout! = 0
    y![1] = 1
    y![2] = 1
    y![3] = 1
    y![4] = 1
    y![5] = 1
    PRINT "\n       T                 Y1                        Y2                       Y3                         Y4                        Y5                 \n"
    PRINT " ";format$(F$,tout!);
    PRINT tab(26);format$(F$,y![1]);
    PRINT tab(52);format$(F$,y![2]);
    PRINT tab(77);format$(F$,y![3]);
    PRINT tab(104);format$(F$,y![4]);
    PRINT tab(130);format$(F$,y![5])

    Whileloop nstep&

        istep&=&Loop
        t! = ((nstep& - istep& + 1) * tstart! + (istep& - 1) * tstop!) / nstep&
        tout! = ((nstep& - istep&) * tstart! + (istep& * tstop!) / nstep&)
        GOSUB "S2000"'call rkfs (neqn,y,t,tout,relerr,abserr,iflag,yp,h,f1..f5,savr,save,nfe,kop,init,jflag,kflag)
        PRINT " ";format$(F$,tout!);
        PRINT tab(26);format$(F$,y![1]);
        PRINT tab(52);format$(F$,y![2]);
        PRINT tab(77);format$(F$,y![3]);
        PRINT tab(104);format$(F$,y![4]);
        PRINT tab(130);format$(F$,y![5])

    Endwhile

EndProc

'{* Differential Equations By the Runge-Kutta-Fehlberg method (double precision)
S1000:
'Subroutine fehl(neqn, y, t, h, yp, f1, f2, f3, f4, f5, s)
ch! = h! / 4

whileloop neqn&:i&=&Loop

    f5![i&] = y![i&] + ch! * yp![i&]

endwhile

tt! = t! + ch!

whileloop neqn&:i&=&Loop

    yy![i&] = f5![i&]

endwhile

GOSUB "S400"'call f(t+ch, f5, f1)

whileloop neqn&:i&=&Loop

    f1![i&] = yyp![i&]

endwhile

ch! = 3*h!/32

whileloop neqn&:i&=&Loop

    f5![i&] = y![i&] + ch! * (yp![i&] + 3 * f1![i&])

endwhile

tt! = t!+3*h!/8

whileloop neqn&:i&=&Loop

    yy![i&] = f5![i&]

endwhile

GOSUB "S400"' call f(t+3*h/8, f5, f2)

whileloop neqn&:i&=&Loop

    f2![i&] = yyp![i&]

endwhile

ch! = h!/2197

whileloop neqn&:i&=&Loop

    f5![i&] = y![i&] + ch! * (1932 * yp![i&] + (7296 * f2![i&] - 7200 * f1![i&]))

endwhile

tt! = t!+12*h!/13

whileloop neqn&:i&=&Loop

    yy![i&] = f5![i&]

endwhile

GOSUB "S400"'call f(t+12#*h/13#, f5, f3)

whileloop neqn&:i&=&Loop

    f3![i&] = yyp![i&]

endwhile

ch! = h!/4104

whileloop neqn&:i&=&Loop

    f5![i&] = y![i&] + ch! * ((8341 * yp![i&] - 845 * f3![i&]) + (29440 * f2![i&] - 32832 * f1![i&]))

endwhile

tt! = t! + h!

whileloop neqn&:i&=&Loop

    yy![i&] = f5![i&]

endwhile

GOSUB "S400"'call f(t+h, f5, f4)

whileloop neqn&:i&=&Loop

    f4![i&] = yyp![i&]

endwhile

ch! = h!/20520

whileloop neqn&:i&=&Loop

    tmp! = (41040 * f1![i&] - 28352 * f2![i&])
    f1![i&] = y![i&] + ch! * ((-6080 * yp![i&] + (9295 * f3![i&] - 5643 * f4![i&])) + tmp!)

endwhile

tt! = t!+h!/2

whileloop neqn&:i&=&Loop

    yy![i&] = f1![i&]

endwhile

GOSUB "S400"'call f(t+h/2#, f1, f5)

whileloop neqn&:i&=&Loop

    f5![i&] = yyp![i&]

endwhile

ch! = h! / 7618050

whileloop neqn&:i&=&Loop

    tmp! = (3953664 * f2![i&] + 277020 * f5![i&])
    f1![i&] = y![i&] + ch! * ((902880 * yp![i&] + (3855735 * f3![i&] - 1371249 * f4![i&])) + tmp!)

endwhile

RETURN
S1200:

IF ib& < 0 : ISign& = -ABS(ia&)

    ELSE : ISign& = ABS(ia&)

ENDIF

RETURN
S1210:

IF b!<0 :Sign! = -1*ABS(a!)

    ELSE :Sign! = ABS(a!)

ENDIF

RETURN
S1300:

IF a!>=b!:XMax! = a!

    ELSE :XMax! = b!

ENDIF

RETURN
S1310:

IF a!<=b!:XMIN! = a!

    ELSE :XMIN! = b!

ENDIF

RETURN
'}
S2000:
'{Subroutine rkfs(neqn, y, t, tout, relerr, abserr, iflag, yp, h, f1, f2, f3, f4,f5,
'                savr, save, nfe, kop, init, jflag, kflag)
'***************************************************************************************
'  RKFS implements the Runge-Kutta-Fehlberg method (double precision).
'***************************************************************************************
' Labels:  25,40,45,50,60,65,80,100,200,260
remin!  = .000000000001
maxnfe& = 3000
eps! = EPSILON!

IF neqn& < 1:iflag& = 8:RETURN

ENDIF

IF relerr! < 0:iflag& = 8:RETURN

ENDIF

IF abserr! < 0:iflag& = 8:RETURN

ENDIF

mflag& = ABS(iflag&)

IF (ABS(iflag&) < 1) OR (ABS(iflag&) > 8)

    iflag& = 8
    RETURN

ENDIF

case mflag& = 1 : GOTO "G50"

IF (t! = tout!) AND (kflag& <> 3)

    iflag& = 8
    RETURN

ENDIF

Case mflag& <> 2 : GOTO "G25"
Case kflag& = 3 : GOTO "G45"
Case init&  = 0 : GOTO "G45"
Case kflag& = 4 : GOTO "G40"
Case (kflag& = 5) AND (abserr! = 0): END
Case (kflag& = 6) AND (relerr! <= savr!) AND (abserr! <= save!): END
GOTO "G50"
'  iflag = 3,4,5,6,7 or 8
G25:
Case iflag& = 3 : GOTO "G45"
Case iflag& = 4 : GOTO "G40"
Case (iflag& = 5) AND (abserr > 0) : GOTO "G45"
END
G40:
nfe& = 0
Case mflag& = 2 : GOTO "G50"
G45:
iflag& = jflag&
Case kflag& = 3 : mflag& = ABS(iflag&)
G50:
jflag& = iflag&
kflag& = 0
savr! = relerr!
save! = abserr!
rer! = 2 * EPSILON! + remin!

IF relerr! < rer!

    relerr! = rer!
    iflag& = 3
    kflag& = 3
    RETURN

ENDIF

dt! = tout! - t!
Case mflag& = 1 : GOTO "G60"
Case init& = 0 : GOTO "G65"
GOTO "G80"
G60:
init& = 0
kop& = 0
a! = t!

whileloop neqn&:i&=&Loop

    yy![i&] = y![i&]

endwhile

GOSUB "S400"'call f(a, y, yp)

whileloop neqn&:i&=&Loop

    yp![i&] = yyp![i&]

endwhile

nfe& = 1

IF t! = tout! : iflag& = 2 : RETURN

ENDIF

G65:
init& = 1
h! = ABS(dt!)
toln! = 0

whileloop neqn&:k&=&Loop

    tol! = relerr! * ABS(y![k&]) + abserr!

    IF tol! > 0

        toln! = tol!
        ypk! = ABS(yp![k&])

        IF (ypk!*h!^5) > tol!

            h! = (tol! / ypk!)^0.2

        ENDIF

    ENDIF

endwhile

case toln! <= 0 : h! = 0

IF ABS(t!) > ABS(dt!) : tmp! = ABS(t!)

    ELSE : tmp! = ABS(dt!)

ENDIF

IF h! < (26 * ep! * tmp!) : h! = 26 * eps! * tmp!

ENDIF

ia& = 2: ib& = iflag&: GOSUB "S1200"
jflag& = ISign&
G80:
a! = h!: b! = dt!: GOSUB "S1210"
h! = Sign!
Case ABS(h!) >= (2*ABS(dt!)): kop& = kop& + 1

IF kop! = 100

    kop! = 0
    iflag& = 7
    RETURN

ENDIF

IF ABS(dt!) <= (26 * eps! * ABS(t!))

    WhileLoop neqn&:i&=&Loop

        y![i&] = y![i&] + dt! * yp![i&]

    Endwhile

    a! = tout!

    WhileLoop neqn&:i&=&Loop

        yy(i) = y(i)

    endwhile

    GOSUB "S400"'call f(a, y, yp)

    WhileLoop neqn&:i&=&Loop

        yp![i&] = yyp![i&]

    endwhile

    nfe& = nfe& + 1
    t! = tout!
    iflag! = 2
    RETURN

ENDIF

ioutput& = 0
scale! = 2 / relerr!
ae! = scale! * abserr!
G100:
ihfaild& = 0
hmin! = 26 * eps! * ABS(t!)
dt! = tout! - t!
Case ABS(dt!) >= (2 * ABS(h!)) : GOTO "G200"

IF ABS(dt!) <= ABS(h!)

    ioutput& = 1
    h! = dt!
    GOTO "G200"

ENDIF

h! = 0.5 * dt!'reduce step
G200:

IF nfe& > maxnfe&

    iflag& = 4
    kflag& = 4
    RETURN

ENDIF

GOSUB "S1000"'call fehl(neqn, y, t, h, yp, f1, f2, f3, f4, f5, f1)
nfe& = nfe& + 5
eeoet! = 0

Whileloop neqn&:k&=&Loop

    et! = ABS(y![k&]) + ABS(f1![k&]) + ae!

    IF et! <= 0

        iflag& = 5
        RETURN

    ENDIF

    tmp! = (22528 * f2![k&] - 27360 * f5![k&])
    ee! = ABS((-2090 * yp![k&] + (21970 * f3![k&] - 15048 * f4![k&])) + tmp!)
    a! = eecet!: b! = ee! / et!: GOSUB "S1300"
    eecet! = XMax!

endwhile

esttol! = ABS(h!) * eeoet! * scale! / 752400
Case esttol! <= 1 : GOTO "G260"
ihfaild& = 1
ioutput& = 0

IF esttol! < 59049

    s! = 0.9 / (esttol!^0.2)

ELSE

    s! = 0.1

ENDIF

h! = s! * h!

IF ABS(h!) < hmin!

    iflag& = 6
    kflag& = 6
    RETURN

ELSE

    GOTO "G200"

ENDIF

G260:
t! = t! + h!

whileloop neqn&:i&=&Loop

    y![i&] = f1![i&]

endwhile

a! = t!

whileloop neqn&:i&=&Loop

    yy![i&] = y![i&]

endwhile

GOSUB "S400"' call f(a, y, yp)

whileloop neqn&:i&=&Loop

    yp![i&] = yyp![i&]

endwhile

nfe& = nfe& + 1

IF esttol! > .0001889568

    s! = 0.9/esttol^0.2

ELSE

    s! = 5

ENDIF

IF ihfaild& <> 0

    a! = s!: b! = 1: GOSUB "S1310": s! = XMIN!

ENDIF

a! = s! * ABS(h!): b! = hmin!: GOSUB "S1300"
a! = XMax!: b! = h!: GOSUB "S1210": h! = Sign!

IF ioutput& <> 0

    t! = tout!
    iflag& = 2

ENDIF

Case iflag& > 0 : GOTO "G100"
iflag& = -2
RETURN
'}
 
XProfan 11
Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'...
14.05.2021  
 



Zum Quelltext


Thementitel, max. 100 Zeichen.
 

Systemprofile:

Kein Systemprofil angelegt. [anlegen]

XProfan:

 Beitrag  Schrift  Smilies  ▼ 

Bitte anmelden um einen Beitrag zu verfassen.
 

Themenoptionen

1.712 Betrachtungen

Unbenanntvor 0 min.
p.specht01.07.2022
R.Schneider20.11.2021
Uwe Lang20.11.2021
Manfred Barei19.11.2021
Mehr...

Themeninformationen

Dieses Thema hat 1 Teilnehmer:

p.specht (1x)


Admins  |  AGB  |  Anwendungen  |  Autoren  |  Chat  |  Datenschutz  |  Download  |  Eingangshalle  |  Hilfe  |  Händlerportal  |  Impressum  |  Mart  |  Schnittstellen  |  SDK  |  Services  |  Spiele  |  Suche  |  Support

Ein Projekt aller XProfaner, die es gibt!


Mein XProfan
Private Nachrichten
Eigenes Ablageforum
Themen-Merkliste
Eigene Beiträge
Eigene Themen
Zwischenablage
Abmelden
 Deutsch English Français Español Italia
Übersetzungen

Datenschutz


Wir verwenden Cookies nur als Session-Cookies wegen der technischen Notwendigkeit und bei uns gibt es keine Cookies von Drittanbietern.

Wenn du hier auf unsere Webseite klickst oder navigierst, stimmst du unserer Erfassung von Informationen in unseren Cookies auf XProfan.Net zu.

Weitere Informationen zu unseren Cookies und dazu, wie du die Kontrolle darüber behältst, findest du in unserer nachfolgenden Datenschutzerklärung.


einverstandenDatenschutzerklärung
Ich möchte keinen Cookie