Deutsch
Quelltexte/ Codesnippets

Multiple nichtlineare Regression

 

p.specht

Multiple nichtlineare Regression
=======================
Multipel bedeutet, daß im folgenden Programm bis zu 9 Einflußgrössen X1...X9 auf eine Ergebnisvariable Y wirken können. Weiters wird dadurch in der jeweiligen Dimension eine Parabel bestimmten Grades (je Einflußgröße verschieden) nach dem Gauss-Kriterium der kleinsten quadratischen Abweichungssumme angepasst. Das klappt allerdings nur, wenn die Einflußgrößen X voneinander unabhängig sind, was z.B. in den Sozialwissenschaften nur sehr schwer zu beurteilen ist. In der Technik finden sich oft gute Argumente, warum ein Einfluß z.B. kubisch in das Ergebnis eingeht: Masse geht natürlich mit der 3. Potenz der Längenabmessungen etc.

Funktionsweise: Nach Eingabe des jeweiligen Ergebniswertes werden die zugehörigen Einflußgrößen eingegeben (Dabei sollten genügend Daten unter unterschiedlichsten Bedingungen vorliegen, etwa aus Laborversuchen). Das Programm errechnet die (bis zu 9-)dimensionale Vandermonde-Matrix und passt iterativ-zyklich alle Parabeln so lange an, bis die Gesamtvarianz nicht weiter verbessert werden kann.

Ergebnis ist dann der Vektor der Koeffizienten der Einflußgrößen-Kombinationen.

Nicht ausführlich geprüft - private Demo ohne jede Gewähr!

Beispiel für eine Vandermonde-Matrix für 2 Einflußgrößen x1 und x2, die hier bis zu quadratisch in das Ergebnis eingehen können:
1 ______ X2______ x2^2
x1 ____ x1*x2___ x1*x2^2
X1^2__ x1^2*x2_ x1^2*x2^2


Anzumerken ist noch, daß mit dem Programm tatsächlich nur Parabeln angepasst werden können. Bei Wachstumsvorgängen etc. sind aber oft Exponentialfunktionen, Logarithmusfunktionen, Sinusschwingungen u.v.a.m. im Spiel. Dafür gibt es dann auch andere Methoden und Herangehensweisen!
WindowTitle "Mehrdimensionale nichtlineare Regression"
'Q: https://jean-pierre.moreau.pagesperso-orange.fr/Basic/regiter_bas.txt
'XProfan-11.2a-Demo (D) transponiert 2017-02 by P.Specht, Vienna/Austria
WindowStyle 24:window 0,0-%maxx,%maxy:font 2:CLS:set("decimals",17)
'*******************************************************
'*  Program to demonstrate multidimensional operation  *
'*  of the multi-nonlinear regression subroutine with  *
'*  iterative error reduction                          *
'* --------------------------------------------------- *
'*  Ref.:  BASIC Scientific Subroutines Vol. II, By    *
'*         F.R. Ruckdeschel, Byte/McGRAW-HILL, 1981    *
'* --------------------------------------------------- *
'* SAMPLE RUN:                                         *
'* MULTI-DIMENSIONAL AND MULTI-NONLINEAR REGRESSION    *
'*                                                     *
'* How many data points ? 10                           *
'*                                                     *
'* How many dimensions ? 2                             *
'*                                                     *
'* What is the fit for dimension 1 ? 2                 *
'* What is the fit for dimension 2 ? 1                 *
'*                                                     *
'* Input the data as prompted:                         *
'*                                                     *
'* Y( 1) = ? 7                                         *
'* X( 1, 1) = ? 1                                      *
'* X( 1, 2) = ? 6                                      *
'*                                                     *
'* Y( 2) = ? 7                                         *
'* X( 2, 1) = ? 6                                      *
'* X( 2, 2) = ? 1                                      *
'*                                                     *
'* Y( 3) = ? 6                                         *
'* X( 3, 1) = ? 3                                      *
'* X( 3, 2) = ? 3                                      *
'*                                                     *
'* Y( 4) = ? 8                                         *
'* X( 4, 1) = ? 2                                      *
'* X( 4, 2) = ? 6                                      *
'*                                                     *
'* Y( 5) = ? 9                                         *
'* X( 5, 1) = ? 1                                      *
'* X( 5, 2) = ? 8                                      *
'*                                                     *
'* Y( 6) = ? 9                                         *
'* X( 6, 1) = ? 7                                      *
'* X( 6, 2) = ? 2                                      *
'*                                                     *
'* Y( 7) = ? 6                                         *
'* X( 7, 1) = ? 3                                      *
'* X( 7, 2) = ? 3                                      *
'*                                                     *
'* Y( 8) = ? 7                                         *
'* X( 8, 1) = ? 3                                      *
'* X( 8, 2) = ? 4                                      *
'*                                                     *
'* Y( 9) = ? 7                                         *
'* X( 9, 1) = ? 4                                      *
'* X( 9, 2) = ? 3                                      *
'*                                                     *
'* Y( 10) = ? 2                                        *
'* X( 10, 1) = ? 0                                     *
'* X( 10, 2) = ? 2                                     *
'*                                                     *
'* The calculated coefficients are:                    *
'*                                                     *
'*  1    0                                             *
'*  2    .999999                                       *
'*  3    0                                             *
'*  4    .999999                                       *
'*  5    0                                             *
'*  6    0                                             *
'*                                                     *
'* Standard deviation:  0                              *
'*                                                     *
'* Number of iterations: 4                             *
'*                                                     *
'*******************************************************
'DEFINT I-N
'DEFDBL A-H, O-Z
declare i&,j&,k&,L&,M&,n&,n1&,n2&,n3&,n4&
declare i1&,i2&,i3&,i4&,i5&,i6&,i7&,i8&,i9&
declare m&[9],m1&,m2&,m3&,m4&,L1&,sw&
declare b!,c!,d!,d1!,y!
Print "\n Frage: Programmiertes Beispiel rechnen [blank oder 0 = Nein]? Beispl.Nr.= ";
input sw&
case sw&<>0:sw&=1' 0:Eigene Eingabe. 1:Obiges Beispiel rechnen
print
PRINT " MULTIDIMENSIONAL NONLINEAR REGRESSION"
PRINT
print " How many data points ? ";
case sw&=1:m&=10
case sw&=0:INPUT m&
PRINT
print " How many dimensions ? ";
case sw&=1:L&=2
case sw&=0:Input L&
PRINT

if sw&=0

    whileloop l&:i&=&Loop'=FOR i& = 1 TO l&

        PRINT " What is the grade of the fit for dimension Nbr."; i&;": x^";
        INPUT m&[i&]

    endwhile'=NEXT i

elseif sw&=1

    m&[1]=2
    m&[2]=1

else

    Print "\n\n Beispiel noch nicht eingegeben!":sound 200,10:waitinput:end

endif

n& = 1

Whileloop l&:i&=&Loop'=FOR i = 1 TO l

    n&=n&*(m&[i&]+1)

endwhile'=NEXT i

case m&<n&:m&=n&'=IF m < n THEN m = n
Declare x![m&,l&],y![m&],z![m&,n&],d![n&],A![m&,m&],B![m&,2*m&],C![m&,m&],d1![n&],y1![m&]
'=DIM x(m, l), y(m), z(m, n), d(n), A(m, m), b(m, 2 * m), c(m, m), d1(n), y1(m)
PRINT

if sw&=0

    PRINT " Input the data as prompted:"
    PRINT

    Whileloop m&:i&=&Loop'=FOR i = 1 TO m

        PRINT " Y("; i&; ") = "; : INPUT y![i&]

        whileloop l&:j&=&Loop'=FOR j = 1 TO l

            PRINT " X("; i&; ","; j&; ") = "; : INPUT x![i&, j&]

        endwhile'=NEXT j

        PRINT

    endwhile'=NEXT i

else

    y![1]=7:x![1,1]=1:x![1,2]=6
    y![2]=7:x![2,1]=6:x![2,2]=1
    y![3]=6:x![3,1]=3:x![3,2]=3
    y![4]=8:x![4,1]=2:x![4,2]=6
    y![5]=9:x![5,1]=1:x![5,2]=8
    y![6]=9:x![6,1]=7:x![6,2]=2
    y![7]=6:x![7,1]=3:x![7,2]=3
    y![8]=7:x![8,1]=3:x![8,2]=4
    y![9]=7:x![9,1]=4:x![9,2]=3
    y![10]=2:x![10,1]=0:x![10,2]=2

endif

'Call iteration supervisor
GOSUB "S2000"
PRINT
PRINT " The calculated coefficients are:"
PRINT

Whileloop n&:i&=&Loop'= FOR i = 1 TO n

    PRINT " "; i&; "  "; INT(1000000 * d![i&]) / 1000000

endwhile'=NEXT i

PRINT
PRINT " Standard deviation: "; INT(1000000 * d!) / 1000000
PRINT
PRINT " Number of iterations: "; l1&
PRINT
print "============================================================="
sound 2000,200
waitinput
beep:cls:Print "\n\n\n\n\n                    BYE!"
waitinput 1000
END
'*************************************************************
'*         Coefficient matrix generation subroutine          *
'*            for multiple non-linear regression.            *
'* --------------------------------------------------------- *
'* Also calculates the standard deviation d, even though     *
'* there is some redundant computing.                        *
'* The maximum number of dimensions is 9.                    *
'* The input data set consists of m data sets of the form:   *
'*   Y(i),X(i,1),X(i,2) ... X(i,l)                           *
'* The number of dimensions is l.                            *
'* The order of the fit to each dimension is M(j).           *
'* The result is an (m1+1)(m2+1)...(ml+1)+1 column by m row  *
'* matrix, Z. This matrix is arranged as follows             *
'* (Ex.:l=2,M(1)=2,M(2)=2):                                  *
'* 1 X1 X1*X1 X2 X2*X1 X2*X1*X1 X2*X2 X2*X2*X1 X2*X2*X1*X1   *
'* This matrix should be dimensioned in the calling program  *
'* as should also the X(i,j) matrix of data values.          *
'*************************************************************
'Calculate the total number of dimensions
S1000:
n& = 1

Whileloop l&:i&=&Loop'= FOR i = 1 TO l

    n& = n& * (m&[i&]+1)

endwhile'= NEXT

d! = 0

Whileloop m&:i&=&Loop'= FOR i = 1 TO m

    'Branch according to dimension l (return if l > 9)
    case l&>0:GOTO "G10"
    l& = 0: RETURN
    G10:
    case l&<=9 : GOTO "G15"
    l& = 0: RETURN
    G15:
    j& = 0
    case l& = 1:GOSUB "S40"
    case l& = 2:GOSUB "S50"
    case l& = 3:GOSUB "S60"
    case l& = 4:GOSUB "S70"
    case l& = 5:GOSUB "S80"
    case l& = 6:GOSUB "S90"
    case l& = 7:GOSUB "S100"
    case l& = 8:GOSUB "S110"
    case l& = 9:GOSUB "S120"
    y! = 0

    Whileloop n&:k&=&Loop'= FOR k& = 1 TO n

        y! = y! + d![k&] * z![i&, k&]

    endwhile'= NEXT k

    d! = d! + (y![i&] - y!) * (y![i&] - y!)

endwhile'= NEXT i

'Calculate standard deviation (if m > n)
G30:
case (m&-n&)>0:GOTO "G35"
d! = 0: RETURN
G35:
d!=d!/(m&-n&)
d!=SQRT(d!)'Quickbasic: sqr
RETURN
'Subroutines used by subroutine 1000
S40:
b! = 1
S41:
c! = b!

Whileloop 0,m&[1]:i1&=&Loop'= FOR i1& = 0 TO m&[1]

    j&=j&+1: z![i&,j&] = b!: b! = b! * x![i&,1]

endwhile'=NEXT i1

b! = c!
RETURN
S50:
b!= 1
S51:
c!= b!

Whileloop 0,m&[2]:i2&=&Loop'= FOR i2 = 0 TO m(2)

    GOSUB "S41"
    b!=b!*x![i&,2]

endwhile'= NEXT i2

b!= c!
RETURN
S60:
b!= 1
S61:
c!= b!

Whileloop 0,m&[3]:i3&=&Loop'= FOR i3 = 0 TO m(3)

    GOSUB "S51"
    b!= b!* x![i&,3]

endwhile'= NEXT i3

b! = c!
RETURN
S70:
b!= 1
S71:
c!= b!

Whileloop 0,m&[4]:i4&=&Loop'= FOR i4 = 0 TO m(4)

    GOSUB "S61"
    b!= b!*x![i&,4]

endwhile'=NEXT i4

b!= c!
RETURN
S80:
b!= 1
S81:
c! = b!

whileloop 0,m&[5]:i5&=&Loop'=FOR i5 = 0 TO m(5)

    GOSUB "S71"
    b!= b!*x![i&,5]

endwhile'=NEXT i5

b!= c!
RETURN
S90:
b!= 1
S91:
c!= b!

Whileloop 0,m&[6]:i6&=&Loop'= FOR i6 = 0 TO m(6)

    GOSUB "S81"
    b! = b!* x![i&,6]

endwhile'=NEXT i6

b!= c!
RETURN
S100:
b!= 1
S101:
c!= b!

whileloop 0,m&[7]'= FOR i7 = 0 TO m(7)

    GOSUB "S91"
    b!= b!* x![i&, 7]

endwhile'= NEXT i7

b!=c!
RETURN
S110:
b!= 1
S111:
c!= b!

whileloop 0,m&[8]:i8&=&Loop'= FOR i8 = 0 TO m(8)

    GOSUB "S101"
    b! = b! * x![i&,8]
    endhwile'= NEXT i8
    b!= c!
    RETURN
    S120:
    b!= 1
    S121:
    c!= b!

    whileloop 0,m&[9]'= FOR i9 = 0 TO m(9)

        GOSUB "S111"
        b! = b! * x![i&,9]

    endwhile'= NEXT i9

    b!= c!
    RETURN
    '**********************************************************
    '*   Least squares fitting subroutine, general purpose    *
    '* subroutine for multidimensional, nonlinear regression  *
    '* ------------------------------------------------------ *
    '* The equation fitted has the form:                      *
    '*     Y = D(1)X1 + D(2)X2 + ... + D(n)Xn                 *
    '* The coefficients are returned by the program in D(i).  *
    '* The X(i) can be simple powers of x, or functions.      *
    '* Note that the X(i) are assumed to be independent.      *
    '* The measured responses are Y(i), there are m of them.  *
    '* Y is a m row column vector, Z(i,j) is a m by n matrix. *
    '* m must be >= n+2. The subroutine inputs are m, n, Y(i) *
    '* and Z(i,j) previously calculated. The subroutine calls *
    '* several other matrix routines during the calculation.  *
    '**********************************************************
    S1200:
    m4& = m&
    n4& = n&

    whileloop m&:i&=&Loop'= FOR i = 1 TO m

        Whileloop n&:j&=&Loop'=   FOR j = 1 TO n

            A![i&,j&] = z![i&, j&]

        endwhile'= NEXT j

    endwhile'= NEXT i

    GOSUB "S5100"'b=Transpose(a)
    n1&= m&: n2& = n&: GOSUB "S5400"'move A to C
    n1&= n&: n2& = m&: GOSUB "S5200"'move B to A
    n1&= m&: n2& = n&: GOSUB "S5300"'move C to B
    m1&= n&: n1& = m&: n2& = n&: GOSUB "S5000"'multiply A and B
    n1&= n&: GOSUB "S5500"'move C to A
    GOSUB "S6000"'b=Inverse(a)
    m& = m4&'restore m
    GOSUB "S5200"'move B to A

    Whileloop m&:i&=&Loop'= FOR i = 1 TO m

        Whileloop n&:j&=&Loop'= FOR j = 1 TO n

            b![j&,i&] = z![i&,j&]

        endwhile'=NEXT j

    endwhile'= NEXT i

    m2& = n&: n2& = m&: GOSUB "S5000"'multiply A and B
    n1& = n&: n2& = m&: GOSUB "S5500"'move C to A

    whileloop m&:i&=&Loop'=FOR i = 1 TO m

        b![i&,1] = y![i&]

    endwhile'=NEXT

    m1& = n&: n2& = 1: n1& = m&: GOSUB "S5000"'multiply A and B
    'Product C is N by 1 - Regression coefficients are in C(I,1)

    whileloop n&:i&=&Loop'= FOR i = 1 TO n

        d![i&] = c![i&,1]

    endwhile'= NEXT

    RETURN
    S5000:
    'Matrix multiplication

    whileloop m1&:i&=&Loop'= FOR i = 1 TO m1

        whileloop n2&:j&=&Loop'= FOR j = 1 TO n2

            c![i&,j&] = 0

            whileloop n1&:k&=&Loop'= FOR k = 1 TO n1

                c![i&,j&] = c![i&,j&] + A![i&,k&] * B![k&,j&]

            endwhile'= NEXT k

        endwhile'= NEXT j

    endwhile'= NEXT i

    RETURN
    S5100:
    'Matrix transpose

    whileloop n&:i&=&Loop'= FOR i = 1 TO n

        whileloop m&:j&=&Loop'= FOR j = 1 TO m

            b![i&,j&] = A![j&,i&]

        endwhile'= NEXT j

    endwhile'= NEXT i

    RETURN
    S5200:
    'Matrix save (B in A)
    case (n1&*n2&)=0:RETURN

    Whileloop n1&:i1&=&Loop'= FOR i1 = 1 TO n1

        whileloop n2&:i2&=&Loop'= FOR i2 = 1 TO n2

            A![i1&,i2&] = b![i1&,i2&]

        endwhile'= NEXT i2

    endwhile'= NEXT i1

    RETURN
    S5300:
    'Matrix save (C in B)
    case (n1& * n2&)=0:RETURN

    Whileloop n1&:i1&=&Loop'= FOR i1 = 1 TO n1

        whileloop n2&:i2&=&Loop'= FOR i2 = 1 TO n2

            b![i1&, i2&] = c![i1&, i2&]

        endwhile'= NEXT i2

    endwhile'= NEXT i1

    RETURN
    S5400:
    'Matrix save (A in C)
    case (n1& * n2&)=0:RETURN

    whileloop n1&:i1&=&Loop'= FOR i1 = 1 TO n1

        whileloop n2&:i2&=&Loop'= FOR i2 = 1 TO n2

            c![i1&,i2&] = A![i1&,i2&]

        endwhile'NEXT i2

    endwhile'NEXT i1

    RETURN
    S5500:
    'Matrix save (C in A)
    case (n1&*n2&)=0:RETURN

    whileloop n1&:i1&=&Loop'= FOR i1 = 1 TO n1

        whileloop n2&:i2&=&Loop'= FOR i2 = 1 TO n2

            A![i1&,i2&] = c![i1&,i2&]

        endwhile'=NEXT i2

    endwhile'=NEXT i1

    RETURN
    S6000:
    'Matrix inversion

    Whileloop n&:i&=&Loop'= FOR i = 1 TO n

        whileloop n&:j&=&Loop'= FOR j = 1 TO n

            b![i&, j& + n&] = 0
            b![i&, j&] = A![i&, j&]

        endwhile'= NEXT j

        b![i&, i& + n&] = 1

    endwhile'= NEXT i

    whileloop n&:k&=&Loop'= FOR k = 1 TO n

        case k& = n&:GOTO "G6010"
        m& = k&

        whileloop k&+1,n&:i&=&Loop'= FOR i = k + 1 TO n

            case ABS(b![i&, k&]) > ABS(b![m&, k&]):m& = i&

        endwhile'= NEXT i

        case m& = k&:GOTO "G6010"

        whileloop k&,2*n&:j&=&Loop'= FOR j = k TO 2 * n

            b! = b![k&, j&]
            b![k&, j&] = b![m&, j&]
            b![m&, j&] = b!

        endwhile'= NEXT j

        G6010:

        whileloop k&+1,2*n&:j&=&Loop'= FOR j = k + 1 TO 2 * n

            b![k&, j&] = b![k&, j&] / b![k&, k&]

        endwhile'= NEXT j

        case k& = 1:GOTO "G6020"

        whileloop k&-1:i&=&Loop'= FOR i = 1 TO k - 1

            whileloop k&+1,2*n&:j&=&Loop'= FOR j = k + 1 TO 2 * n

                b![i&,j&] = b![i&,j&] - b![i&,k&] * b![k&,j&]

            endwhile'= NEXT j

        endwhile'= NEXT i

        Case k& = n&:GOTO "G6030"
        G6020:

        whileloop k&+1,n&:i&=&Loop'= FOR i = k + 1 TO n

            whileloop k&+1,2*n&:j&=&Loop'= FOR j = k + 1 TO 2 * n

                b![i&,j&] = b![i&,j&] - b![i&,k&] * b![k&,j&]

            endwhile'= NEXT j

        endwhile'=NEXT i

    endwhile'= NEXT k

    G6030:

    Whileloop n&:i&=&Loop'= FOR i = 1 TO n

        whileloop n&:j&=&Loop'= FOR j = 1 TO n

            b![i&,j&] = b![i&,j&+n&]

        endwhile'= NEXT j

    endwhile'= NEXT i

    RETURN
    '********************************************************************
    '*   Multi-dimensional polynomial regression iteration subroutine   *
    '* ---------------------------------------------------------------- *
    '* This routine supervises the calling of several other subroutines *
    '* in order to iteratively fit least squares polynomials in more    *
    '* than one dimension.                                              *
    '* The routine repeatedly calculates improved coefficients until    *
    '* the standard deviation is no longer reduced. The inputs to the   *
    '* subroutine are the number of dimensions l&, the degree of fit    *
    '* for each dimension m(i), and the input data, x(i) and y(i).      *
    '* The coefficients are returned in d(i), with the standard devia-  *
    '* tion in d. Also returned is the number of iterations tried, l1&. *
    '* y1(i), d1(i) and d1 are used respectively to save the original   *
    '* values of y(i) and the current values of d(i) and d.             *
    '********************************************************************
    S2000:
    l1& = 0
    'Save the y![i&]

    whileloop m&:i&=&Loop'= FOR i = 1 TO m

        y1![i&] = y![i&]

    endwhile'= NEXT

    'Zero d1(i)

    whileloop n&:i&=&Loop'= FOR i = 1 TO n

        d1![i&] = 0

    endwhile'= NEXT

    'Set the initial standard deviation high
    d1! = 10000000
    'Call coefficients subroutine
    G2050:
    GOSUB "S1000"
    'Call regression subroutine
    GOSUB "S1200"
    'Get standard deviation
    GOSUB "S1000"
    'If standard deviation is decreasing, continue
    case d1! > d!:GOTO "G2100"
    'Terminate iteration

    whileloop n&:i&=&Loop'= FOR i = 1 TO n

        d![i&] = d1![i&]

    endwhile'= NEXT

    ' Restore y![i&]

    Whileloop m&:i&=&Loop'=FOR i = 1 TO m

        y![i&] = y1![i&]

    endwhile'= NEXT

    'Get the final standard deviation
    GOSUB "S1000"
    RETURN
    'Save the standard deviation
    G2100:
    d1! = d!: l1& = l1& + 1
    'Augment coefficient matrix

    whileloop n&:i&=&Loop'= FOR i = 1 TO n

        d![i&] = d1![i&] + d![i&]
        d1![i&] = d![i&]

    endwhile'=NEXT

    'Restore y![i&]

    whileloop m&:i&=&Loop'=FOR i = 1 TO m

        y![i&] = y1![i&]

    endwhile'= NEXT

    'Reduce y![i&] according to the d(i)
    GOSUB "S2150"
    'We now have a set of error values
    GOTO "G2050"
    'End subroutine 2000
    'Subroutine 2150
    S2150:

    whileloop m&:i&=&Loop'= FOR i = 1 TO m

        j& = 0
        Case l& = 1:GOSUB "S2160"
        Case l& = 2:GOSUB "S2170"
        Case l& = 3:GOSUB "S2180"
        Case l& = 4:GOSUB "S2190"
        Case l& = 5:GOSUB "S2200"
        Case l& = 6:GOSUB "S2210"
        Case l& = 8:GOSUB "S2230"
        Case l& = 9:GOSUB "S2240"
        'Array generated for row i
        y! = 0

        whileloop n&:k&=&Loop'= FOR k = 1 TO n

            y! = y! + d![k&] * z![i&,k&]

        endwhile'= NEXT k

        y![i&] = y![i&] - y!

    endwhile'= NEXT i

    RETURN
    'End subroutine S2150
    S2160:
    b!=1
    S2161:
    c!=b!

    whileloop 0,m&[1]:i1&=&Loop'FOR i1 = 0 TO m(1)

        j&= j& + 1
        z![i&,j&] = b!: b! = b! * x![i&,1]

    endwhile'NEXT i1

    b! = c!
    RETURN
    S2170:
    b!= 1
    S2171:
    c!= b!

    whileloop 0,m&[2]:i2&=&Loop'= FOR i2 = 0 TO m(2)

        GOSUB "S2161"
        b!= b!* x![i&,2]

    endwhile'NEXT i2

    b!=c!
    RETURN
    S2180:
    b! = 1
    S2181:
    c! = b!

    whileloop 0,m&[3]:i3&=&Loop'= FOR i3 = 0 TO m(3)

        GOSUB "S2171"
        b = b * x(i, 3)

    endwhile'= NEXT i3

    b!= c!
    RETURN
    S2190:
    b!= 1
    S2191:
    c!= b!

    whileloop 0,m&[4]:i4&=&Loop'= FOR i4 = 0 TO m(4)

        GOSUB "S2181"
        b!= b!* x![i&,4]

    endwhile'NEXT i4

    b! = c!
    RETURN
    S2200:
    b! = 1
    S2201:
    c!= b!

    whileloop 0,m&[5]:i5&=&Loop'= FOR i5 = 0 TO m(5)

        GOSUB "S2191"
        b! = b! * x![i&,5]

    endwhile'NEXT i5

    b! = c!
    RETURN
    S2210:
    b! = 1
    S2211:
    c! = b!

    whileloop 0,m&[6]:i6&=&Loop'= FOR i6 = 0 TO m(6)

        GOSUB "S2201"
        b! = b! * x![i&,6]

    endwhile'NEXT i6

    b! = c!
    RETURN
    S2220:
    b! = 1
    S2221:
    c! = b!

    whileloop 0,m&[7]:i7&=&Loop'= FOR i7 = 0 TO m(7)

        GOSUB "S2211"
        b!= b!* x![i&,7]

    endwhile'= NEXT i7

    b! = c!
    RETURN
    S2230:
    b! = 1
    S2231:
    c! = b!

    whileloop 0,m&[8]:i8&=&Loop'= FOR i8 = 0 TO m(7)

        GOSUB "S2221"
        b! = b! * x![i,8]' war 7 ! Fehler?

    endwhile'NEXT i8

    b! = c!
    RETURN
    S2240:
    b! = 1

    whileloop 0,m&[9]:i9&=&Loop'= FOR i9 = 0 TO m(9)

        GOSUB "S2231"
        b! = b! * x!(i&,9)

    endwhile'NEXT i9

    RETURN
    'End Pgm regiter.prf
 
Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'...
24.05.2021  
 



Zum Quelltext


Thementitel, max. 100 Zeichen.
 

Systemprofile:

Kein Systemprofil angelegt. [anlegen]

XProfan:

 Beitrag  Schrift  Smilies  ▼ 

Bitte anmelden um einen Beitrag zu verfassen.
 

Themenoptionen

1.267 Betrachtungen

Unbenanntvor 0 min.
p.specht06.07.2022
Uwe Lang20.11.2021
Manfred Barei19.11.2021
Wilfried Friebe17.11.2021
Mehr...

Themeninformationen

Dieses Thema hat 1 Teilnehmer:

p.specht (1x)


Admins  |  AGB  |  Anwendungen  |  Autoren  |  Chat  |  Datenschutz  |  Download  |  Eingangshalle  |  Hilfe  |  Händlerportal  |  Impressum  |  Mart  |  Schnittstellen  |  SDK  |  Services  |  Spiele  |  Suche  |  Support

Ein Projekt aller XProfaner, die es gibt!


Mein XProfan
Private Nachrichten
Eigenes Ablageforum
Themen-Merkliste
Eigene Beiträge
Eigene Themen
Zwischenablage
Abmelden
 Deutsch English Français Español Italia
Übersetzungen

Datenschutz


Wir verwenden Cookies nur als Session-Cookies wegen der technischen Notwendigkeit und bei uns gibt es keine Cookies von Drittanbietern.

Wenn du hier auf unsere Webseite klickst oder navigierst, stimmst du unserer Erfassung von Informationen in unseren Cookies auf XProfan.Net zu.

Weitere Informationen zu unseren Cookies und dazu, wie du die Kontrolle darüber behältst, findest du in unserer nachfolgenden Datenschutzerklärung.


einverstandenDatenschutzerklärung
Ich möchte keinen Cookie