English
Forum

curve glätten

 

Walter
Köhler
Hello Profaner I have a problem and yet none Lösungsansatz. Problembeschreibung: I take with of/ one Kamera one bewegtes Objekt on, and registriere The X/Y Coordinates of it in a list. then form I the lane the Objekt through "Lineto" to. so far so well. trouble: The Objektverfolgung isn't very very, The line is therefore something zitterig. I have some over "glätten" gegoogelt, (Bezier etc, ) but this is me from the Matte since To hoch; sorry. has someone a idea How I a unregelmäßige "zitterige" curve glätten can Walter Profan 11.2

127 kB
Hochgeladen:09/21/18
Downloadcounter107
Download
 
WKS Win XP Xprofan 10 AMD 1.6GHz 1GB Ram
09/21/18  
 




RAW
Hi,

without now Execl o. ä. To verweisen, remaining with profanen Mitteln only The Possibility, a own filter To write. circa Kurvenwerte To glätten (engl. smooth) want we now time smoothen:

The simplest lane is a gedachtes Quadrat, to that example 3 x 3 Kästchen (or 5 x 5, etc.), ex the actually worth to in front on The possible curve To lay and the story the left row - the mittleren row and the rechten row auszurechnen. so go runaway (to +y / -y) neatened. in this Kästchen can also yet Special Filterwerte hinzugerechnet go (z. B. -2,-1,0,+3,+3), so the allg. principle. whom actually story sustain one, if z.B. The last (back) 3 values gemittelt go.

filter can number of times uses go. apiece glatter becomes The curve...
 
09/21/18  
 




p.specht

is distant of it, a Solution for the trouble To his, because one there plenty adjust must, z.B. x and y vertauschen. but the principle would think I fit. the part isn't of me, and allfällige rights Third müssten first examined go. means: without jedwede warranty and mere To Demonstrationszwecken:
Window Title "Interpolation zw. Stützwerten through Polynomkoeffizienten-Anpassung"
Window Style 24:randomize:CLS rnd(8^8):font 2:set("decimals",18)
'{********************************************************
'*       Polynomial Interpolation or Extrapolation       *
'*              of a Discreet Function F(x)              *
'* ----------------------------------------------------- *
'* SAMPLE RUN:                                           *
'* (Example: Function sin(x) - 2*cos(x) is given by 12   *
'*          points from x=0 to x=1.1.                    *
'*          Extrapolate for x=1.255).                    *
'*                                                       *
'*  For X             =  1.255                           *
'*  Estimated Y value =  .3294023272245815               *
'*  Estimated Error   = -8.273064603451457E-11           *
'*  Exact Y value     =  .3294023272200048               *
'*                                                       *
'* ----------------------------------------------------- *
'* REFERENCE: "Numerical Recipes, The manner of Scientific  *
'*             Computing By W.H. Press, B.P. Flannery,   *
'*             s.A. Teukolsky and W.T. Vetterling,       *
'*             cambridge University Press, 1986"         *
'*                                                       *
'*                  Basic Release By J-P Moreau, Paris.  *
'*                           (www.jpmoreau.fr)           *
'*********************************************************
'*                                                       *
'*      XProfan-Version  2014-10 by P.woodpecker, Wien       *
'*                                                       *
'*********************************************************
'}
' PROGRAM TEST_POLINT
Var n&=12' Number of points
Declare X![N&],Y![N&],C![N&],D![N&]
Declare i&,x1!,xx!,fct!,yy!,DY!

REPEAT

    ' The Stützwerte müssten NOT absolutely in equal intervals lying!
    ' define tables X and Y 'ACHTUNG: ARRAY IS MIT BASISINDEX 1 GEFÜHRT!
    X![1] = 0.0
    X![2] = 0.1
    X![3] = 0.2
    X![4] = 0.3
    X![5] = 0.4
    X![6] = 0.5
    X![7] = 0.6
    X![8] = 0.7
    X![9] = 0.8
    X![10]= 0.9
    X![11]= 1.0
    X![12]= 1.1

    Whileloop n&:i&=&Loop

        X1! = X![I&]
        FCT!=FCT(X1!)
        Y![I&] = FCT!

    Endwhile

    proc FCT :parameters x1!

        ' FUNCTION FCT(X1) ' but not Tabelleneingabe the Y-Stützwerte
        ' becomes here a known function herangezogen.
        ' the allows a check the accuracy the Interpolation
        FCT! = SIN(X1!) - 2.0 * COS(X1!)
        RETURN FCT!

    endproc

    ' ANWENDUNG DES GEFUNDENEN POLYNOMS
    ' default one X-Wertes and query the intern found Interpolationsformel
    print "\n EINGABE:  X-worth, for Y To interpolate is "
    print " (with X=0 becomes eingebauter Testwert 1.255 uses) X = ";
    input xx! : case xx!=0 : XX! = 1.255
    ' INTERPOLATION
    yy!=POLINT(X1!,N&,XX!,YY!)
    ' AUSGABE
    case %csrlin>20:cls rnd(8^8)
    PRINT
    PRINT "     for the sought X = ";stature$("%g",XX!)
    PRINT "  Interpolierter Y-worth = ";stature$("%g",YY!)
    PRINT "       latest Korrektur = ";stature$("%g",DY!)
    X1! = XX! : FCT!=FCT(X1!)
    PRINT " Exakter Vergleichswert = ";stature$("%g",FCT!)
    PRINT "--------------------------------------------------\n"

UNTIL 0

proc STOP :sound 2000,100: waitinput:END

endproc

Proc POLINT :parameters X!,N&,XX!,YY!

    '*****************************************************
    '  Origianl-Subroutine: POLINT(X,Y,n,XX,YY,DY)       *
    '*****************************************************
    '*     Polynomial Interpolation or Extrapolation     *
    '*            of a Discreet Function                 *
    '* ------------------------------------------------- *
    '* INPUTS:                                           *
    '*    X:    Table of abscissas (n)                   *
    '*    Y:    Table of ordinates (n)                   *
    '*    n:    Number of points                         *
    '*   XX:    Interpolation abscissa value             *
    '* OUTPUT:                                           *
    '*   YY:    Returned estimation of function for X    *
    '*   DY:    Estimated error for YY                   *
    '*****************************************************
    Declare NS&,dif!,dift!,C![n&],D![n&],m&,ho!,hp!,w!,whom!
    NS& = 1
    DIF! = ABS(XX! - X![1])

    whileloop n&:i&=&Loop

        DIFT! = ABS(XX! - X![1])

        IF DIFT! < DIF!

            NS& = I&'index of closest table entry
            DIF! = DIFT!

        ENDIF

        C![I&] = Y![I&]'Initialize the C"s and D"s
        D![I&] = Y![I&]

    endwhile

    YY! = Y![NS&]'Initial approximation of Y
    NS& = NS& - 1

    whileloop n&-1:m&=&Loop

        whileloop n&-m&:i&=&Loop

            HO! = X![I&] - XX!
            HP! = X![I& + M&] - XX!
            W! = C![I& + 1] - D![I&]
            DEN! = HO! - HP!

            IF DEN! = 0

                PRINT
                PRINT " *** FEHLER: ZWEI STÜTZWERTE WIDERSPRECHEN SICH! *** "
                STOP

            ENDIF

            DEN! = W! / DEN!
            D![I&] = HP! * DEN!'Update the C's and D's
            C![I&] = HO! * DEN!

        endwhile

        IF (2*NS&) < (N&-M&)' After each column in the tableau XA is completed,

            DY! = C![NS&+1]' we decide which correction, C or D, we want to

        ELSE' add to our accumulating value of Y, i.e. which

            DY! = D![NS&]' path to take through the tableau, forking up or
            NS& = NS& - 1' down. We do this in such a way as to take the

        ENDIF' most "straight line" route through the tableau to

        ' its apex, updating NS accordingly to keep track
        YY! = YY! + DY!' of where we are. Diese route keeps the partial

    endwhile' approximations centered (insofar as possible) on

    ' the target X.The last DY added is thus the error
    RETURN YY!' indication.
    endpro

important: not To many Stützwerte, otherwise becomes The thing sooner yet zittriger!
The manuelle Input-Loop would then by the desired Zwischenwerte To supplant and as spots with short Lineto-Stücken einzutragen. alternatively could one too a "gleitenden Durchschnitt" from 3 To 5 Points form.
 
Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'...
09/21/18  
 




RAW
here one simple practice-example from obigem Posting, circa runaway in a curve To glätten:

Beispielwerte of/ one ansteigenden curve (y-values):
114, 116, 120, 123, 124, 127, 129, 150, 133, 136 / runaway 150

take we on, we stand on the point 127 (in x-direction the 6. point).
The story the vorderen 3 values of 129, 150, 133 sounds: 137 / runaway 150
The most worth of 150 becomes now To 137.
Repeat the vorderen 3 values of 129, 137, 133 yields 133.

now supplant we The vorderen 3 values with the worth 133 - voila... / glattere curve

as Lösungsansatz might this example vollends genügen.
 
09/22/18  
 



Sub-Topic: curve glätten resolved  [...]  created.
 
09/24/18  
 



Answer


Topictitle, max. 100 characters.
 

Systemprofile:

no Systemprofil laid out. [anlegen]

XProfan:

 Posting  Font  Smilies  ▼ 

Please register circa a Posting To verfassen.
 

Topic-Options

5.342 Views

Untitledvor 0 min.
ecki02/10/23
Rolf Koch02/13/22
Normann Strübli03/31/20
p.specht09/05/19
More...

Themeninformationen

this Topic has 3 subscriber:

Walter Köhler (2x)
RAW (2x)
p.specht (1x)


Admins  |  AGB  |  Applications  |  Authors  |  Chat  |  Privacy Policy  |  Download  |  Entrance  |  Help  |  Merchantportal  |  Imprint  |  Mart  |  Interfaces  |  SDK  |  Services  |  Games  |  Search  |  Support

One proposition all XProfan, The there's!


My XProfan
Private Messages
Own Storage Forum
Topics-Remember-List
Own Posts
Own Topics
Clipboard
Log off
 Deutsch English Français Español Italia
Translations

Privacy Policy


we use Cookies only as Session-Cookies because of the technical necessity and with us there no Cookies of Drittanbietern.

If you here on our Website click or navigate, stimmst You ours registration of Information in our Cookies on XProfan.Net To.

further Information To our Cookies and moreover, How You The control above keep, find You in ours nachfolgenden Datenschutzerklärung.


all rightDatenschutzerklärung
i want none Cookie