| |
|
|
p.specht
| Erläuterungen find itself in the program. Routenplaner for Navis need such a thing ...
Window Title "************** CATALAN-ZAHLEN ******************"
Font 2:randomize:cls rnd(8^8)
set("Decimals",0)
Declare nmax&,n&,p!
zugross:
locate 1,1
print " Catalan-numbers to charge (n_max=511): n = ";
locate 1,45
input nmax&
case nmax&>511:goto "zugross"
n&=0
While n&<=nmax&
p!=1
WhileLoop 1,2*n&-1,2
p!=p!*&Loop/(&Loop+1)
EndWhile
p!=p!*2^(2*n&)/(n&+1)
'print " C("+st$(n&)+") = ";
print n&;":";st$(p!)+" ";
case %pos>40: print
if %csrlin>22 : WaitInput 2000: cls rnd(8^8): endif
inc n&
EndWhile
print "\n\nEs follow some Info..."
WaitInput 6000
Cls rnd(8^8)
print " 1. "
print " Catalan-numbers are benannt to "
print " charles Catalan, belgischer Mathematiker "
print " (1814-1894). it worked on Kettenbrüchen, "
print " Geometrie, Zahlentheorie and Kombinatorik. "
print " (Anm.: numbers this follow get already "
print " 1751 of Leonhard Euler in a letter on "
print " Christian Goldbach described. Euler sought "
print " The Number of Opportunities, one konvexes n- "
print " Eck through Diagonalen in Dreiecke To decompose.)"
print " -------------------------------------------- "
print " Catalan-numbers having similar weight "
print " How z.B. the Pascal'sche Dreieck or "
print " The Fibonacci-follow. "
print " -------------------------------------------- "
print " "
WaitInput 20000
cls rnd(8^8)
print " 2. "
print " further Zuschreibungen: "
print " -------------------------------------------- "
print " The Catalanische supposition (1844) watts "
print " first 2002 of Mihailescu proved: "
print " 'except 2^3 and 3^2 there no real "
print " Potenzen, which circa very 1 discern' "
print " -------------------------------------------- "
print " The Catalan'sche Constant G is the "
print " Grenzsumme of -1^n/(2*n+1)^2 for n=0..+Inf. "
print " G = 0,915965594177219015054603514932384110:: "
print " ::77414937428167... (follow A006752 in OEIS) "
print " on the 16. april 2009 were 31026000000 comma- "
print " to put famous. "
print " -------------------------------------------- "
print " "
WaitInput 20000
cls rnd(8^8)
print " 3. "
print " Berechnung of Catalan-numbers: "
print " -------------------------------------------- "
print " The n. Catalan-number C_n errechnet itself To "
print " 1/(n+1) * (2n OVER n) = (2*n)!/((n+1)!*n!) "
print " where 2n over n = Mittlerer Binomialkoeff. "
print " above-mentioned Formel is equivalent To "
print " C(n)=(2n OVER n) - (2n OVER n+1) "
print " -------------------------------------------- "
print " only C2=2 and C3=5 are Primzahlen. "
print " -------------------------------------------- "
print " "
WaitInput 20000
cls rnd(8^8)
print " 4. "
print " Applications with Catalan-numbers: "
print " -------------------------------------------- "
print " Catalan-numbers zurück with Abzählungsaufgaben "
print " on, graphentheoretisch with undertow. Bäumen. "
print " -------------------------------------------- "
print " C_n is too The Number of Klammerungen eines"
print " Produktes,in the n Multiplikationen vorkommen,"
print " or with n+1 factors so, that always only The "
print " Multipl. two factors durchzuführen is. "
print " -------------------------------------------- "
print " "
WaitInput 20000
cls rnd(8^8)
print " 5. "
print " Paths and Irrfahrten "
print " too eindimensionale Irrfahrten of 0 to 2n "
print " with initially-& Endpunkt in 0 so, that itself the "
print " way never below the x-axis befindet: 2n=6:"
print " ///\\\\\ //\/\\\\ //\\\\/\ /\//\\\\ /\/\/\: C(3)=5 "
print " -------------------------------------------- "
print " C_n gives The number the Gitterwege of A to B."
print " -------------------------------------------- "
print " amount unterschiedlicher Binärbäumen with 2n+1 "
print " nodes (or. n+1 flaking): C(n) "
print " -------------------------------------------- "
print " "
print " end "
WaitInput
End
|
|
|
| XProfan 11Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'... | 05/01/21 ▲ |
|
|
|