| |
|
|
p.specht
| in the area Statistik has because of yours Verwandtschaft to Gauss'schen Glockenkurve ("Normalverteilungsfunktion") in manchen special Teilgebieten (about in the risk- and Ausfallsanalyse) The something leichter To berechnende Fehlerfunktion Erf(x) etabliert. too The Komplementärfunktion ErfC(x) = 1-Erf(x) has here entry found (Info: on place x=0 is the worth the Komplementärfunktion 1-0 = 1, The function is means NOT zentralsymmetrisch to Erf(x)-function! After this "Fehler" I had me first yet krumm and bucklig sought, it was but quite none !)
In FORTRAN stand these functions incidentally of beginning on as Bibliotheksfunktionen available. there should still XProfan under no circumstance behind, or?
Window Title upper$("Gauss'sche Fehlerfunktionen Erf(x) and Erfc(x)")
' Q: https://de.wikipedia.org/wiki/Fehlerfunktion#Numerische_Berechnung
' Umsetzung in XPRofan (CL) CopyLeft 2014-10 by P.woodpecker, Wien
' No however geartetet Gewähr!
Proc Erf :parameters x!
' Approximation of Erf() for kompletten Wertebereich, maximum Error 1.2E-7
declare t!,t2!,t3!,t4!,t5!,t6!,t7!,t8!,t9!,dew!
t!=1/(1+0.5*abs(x!)):t2!=sqr(t!):t3!=t!*t2!:t4!=t2!*t2!
t5!=t3!*t2!:t6!=t3!*t3!:t7!=t4!*t3!:t8!=t4!*t4!:t9!=t5!*t4!
dew!=t!*exp(-sqr(x!)-1.26551223+1.00002368*t!+0.37409196*t2!+0.09678418*t3!-0.18628806*t4!+\
0.27886807*t5!-1.13520398*t6!+1.48851587*t7!-0.82215223*t8!+0.17087277*t9!)
case x!>=0:return 1-dew!
return dew!-1
endproc
proc Erfc:parameters x!' Complementäre Fehlerfunktion 1-Erf(x), not zentralsymmetrisch!
return 1-Erf(x!)
endproc
Window Style 24:Window 0,0-%maxx,%maxy-40
var xh&=width(%hwnd)\2:var yh&=height(%hwnd)\2:var x!=0
var zoomx!=%maxx/1366:var zoomy!=%maxy/768
noamoi:
Cls
'Achsen
usepen 2,1,rgb(0,0,0):line 0,yh&-2*xh&,yh&:line xh&,0-xh&,2*yh&
'Beschriftung
usefont "ARIAL",60*zoomy!,30*zoomx!,0,0,0:textcolor rgb(200,0,200),-1
drawtext 250*zoomx!,30*zoomy!,"Erfc(x)"
textcolor rgb(200,0,0),-1:drawtext 250*zoomx!,430*zoomy!,"Erf(x)":textcolor 0,-1
drawtext 650*zoomx!,1*zoomy!,"2":drawtext 650*zoomx!,120*zoomy!,"1"
drawtext 650*zoomx!,290*zoomy!,"0"
drawtext 650*zoomx!,450*zoomy!,"-1":drawtext 250*zoomx!,320*zoomy!,"-3.5"
drawtext 950*zoomx!,320*zoomy!,"3.5"
'Asymptotenlinien
usepen 0,2,rgb(0,180,0)
line 0,(yh&-yh&*0.5*erf(-5)) - 2*xh&,yh&-yh&*0.5*erf(-5)
line 0,(yh&-yh&*0.5*erf( 5)) - 2*xh&,yh&-yh&*0.5*erf( 5)
'statement of ERF()
usepen 0,4,rgb(200,0,0):Moveto 0,yh&-yh&*0.5*erf(-3.7)
whileloop -xh&,xh&,1 : x!=&Loop*3.7/xh&
Lineto xh&+x!*xh&/3.7,yh&-yh&*0.5*erf(x!)
endwhile
'Representation of the Komplementärfunktion ErfC(x). she's NOT zentralsymmetrisch!!!
usepen 0,4,rgb(200,0,200):Moveto 0,yh&-yh&*0.5*erfc(-3.7)
whileloop -xh&,xh&,1 : x!=&Loop*3.7/xh&
Lineto xh&+x!*xh&/3.7 , yh&-yh&*0.5*erfc(x!)
endwhile
'spending the Berechnungswerte to that comparison with nachstender Verifizierungstabelle
waitinput 10000:font 2
locate 1,1:Set("decimals",7)
whileloop 0,3500,50:x!=&Loop/1000
print x!,erf(x!),erfc(x!)
case %csrlin>50:waitinput 20000
endwhile
beep
waitinput 20000
GOTO "noamoi"
END
' scheduler to Verification the Formel:
'-----------------------------------------------------------------
' x erf(x) erfc(x) ! x erf(x) erfc(x)
'---------------------------------!-------------------------------
' 0.00 0.0000000 1.0000000 1.30 0.9340079 0.0659921
' 0.05 0.0563720 0.9436280 1.40 0.9522851 0.0477149
' 0.10 0.1124629 0.8875371 1.50 0.9661051 0.0338949
' 0.15 0.1679960 0.8320040 1.60 0.9763484 0.0236516
' 0.20 0.2227026 0.7772974 1.70 0.9837905 0.0162095
' 0.25 0.2763264 0.7236736 1.80 0.9890905 0.0109095
' 0.30 0.3286268 0.6713732 1.90 0.9927904 0.0072096
' 0.35 0.3793821 0.6206179 2.00 0.9953223 0.0046777
' 0.40 0.4283924 0.5716076 2.10 0.9970205 0.0029795
' 0.45 0.4754817 0.5245183 2.20 0.9981372 0.0018628
' 0.50 0.5204999 0.4795001 2.30 0.9988568 0.0011432
' 0.55 0.5633234 0.4366766 2.40 0.9993115 0.0006885
' 0.60 0.6038561 0.3961439 2.50 0.9995930 0.0004070
' 0.65 0.6420293 0.3579707 2.60 0.9997640 0.0002360
' 0.70 0.6778012 0.3221988 2.70 0.9998657 0.0001343
' 0.75 0.7111556 0.2888444 2.80 0.9999250 0.0000750
' 0.80 0.7421010 0.2578990 2.90 0.9999589 0.0000411
' 0.85 0.7706681 0.2293319 3.00 0.9999779 0.0000221
' 0.90 0.7969082 0.2030918 3.10 0.9999884 0.0000116
' 0.95 0.8208908 0.1791092 3.20 0.9999940 0.0000060
' 1.00 0.8427008 0.1572992 3.30 0.9999969 0.0000031
' 1.10 0.8802051 0.1197949 3.40 0.9999985 0.0000015
' 1.20 0.9103140 0.0896860 3.50 0.9999993 0.0000007
|
|
|
| Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'... | 05/15/21 ▲ |
|
|
|