| |
|
|
p.specht
| some Interpolationsalgorithmen give The found Polynom-Koeffizienten from and give over it the users, these in a Formel incorporate. Change itself but the Stützwerte (z.B. because new Messergebnisse hinzukamen), so must jedesmal one new Polynom accounts go. Diesfalls is the nachstehende Program geeigneter, because it The compel Koeffizienten apiece Passage rasch new bereichnet, circa a actually Interpolation (or near Extrapolation as Prognosewert) To detect.
an application are short-term Marktvorhersagen. it deals itself circa a demonstration for private tack without jegliche Gewähr!
Window Title "Interpolation zw. Stützwerten through Polynomkoeffizienten-Anpassung"
Window Style 24:randomize:CLS rnd(8^8):font 2:set("decimals",18)
'{********************************************************
'* Polynomial Interpolation or Extrapolation *
'* of a Discreet Function F(x) *
'* ----------------------------------------------------- *
'* SAMPLE RUN: *
'* (Example: Function sin(x) - 2*cos(x) is given by 12 *
'* points from x=0 to x=1.1. *
'* Extrapolate for x=1.255). *
'* *
'* For X = 1.255 *
'* Estimated Y value = .3294023272245815 *
'* Estimated Error = -8.273064603451457E-11 *
'* Exact Y value = .3294023272200048 *
'* *
'* ----------------------------------------------------- *
'* REFERENCE: "Numerical Recipes, The manner of Scientific *
'* Computing By W.H. Press, B.P. Flannery, *
'* s.A. Teukolsky and W.T. Vetterling, *
'* cambridge University Press, 1986" *
'* *
'* Basic Release By J-P Moreau, Paris. *
'* (www.jpmoreau.fr) *
'*********************************************************
'* *
'* XProfan-Version 2014-10 by P.woodpecker, Wien *
'* *
'*********************************************************
'}
' PROGRAM TEST_POLINT
Var n&=12' Number of points
Declare X![N&],Y![N&],C![N&],D![N&]
Declare i&,x1!,xx!,fct!,yy!,DY!
REPEAT
' The Stützwerte müssten NOT absolutely in equal intervals lying!
' define tables X and Y 'ACHTUNG: ARRAY IS MIT BASISINDEX 1 GEFÜHRT!
X![1] = 0.0
X![2] = 0.1
X![3] = 0.2
X![4] = 0.3
X![5] = 0.4
X![6] = 0.5
X![7] = 0.6
X![8] = 0.7
X![9] = 0.8
X![10]= 0.9
X![11]= 1.0
X![12]= 1.1
Whileloop n&:i&=&Loop
X1! = X![I&]
FCT!=FCT(X1!)
Y![I&] = FCT!
Endwhile
proc FCT :parameters x1!
' FUNCTION FCT(X1) ' but not Tabelleneingabe the Y-Stützwerte
' becomes here a known function herangezogen.
' the allows a check the accuracy the Interpolation
FCT! = SIN(X1!) - 2.0 * COS(X1!)
RETURN FCT!
endproc
' ANWENDUNG DES GEFUNDENEN POLYNOMS
' default one X-Wertes and query the intern found Interpolationsformel
print "\n EINGABE: X-worth, for Y To interpolate is "
print " (with X=0 becomes eingebauter Testwert 1.255 uses) X = ";
input xx! : case xx!=0 : XX! = 1.255
' INTERPOLATION
yy!=POLINT(X1!,N&,XX!,YY!)
' AUSGABE
case %csrlin>20:cls rnd(8^8)
PRINT
PRINT " for the sought X = ";stature$("%g",XX!)
PRINT " Interpolierter Y-worth = ";stature$("%g",YY!)
PRINT " latest Korrektur = ";stature$("%g",DY!)
X1! = XX! : FCT!=FCT(X1!)
PRINT " Exakter Vergleichswert = ";stature$("%g",FCT!)
PRINT "--------------------------------------------------\n"
UNTIL 0
proc STOP :sound 2000,100: waitinput:END
endproc
Proc POLINT :parameters X!,N&,XX!,YY!
'*****************************************************
' Origianl-Subroutine: POLINT(X,Y,n,XX,YY,DY) *
'*****************************************************
'* Polynomial Interpolation or Extrapolation *
'* of a Discreet Function *
'* ------------------------------------------------- *
'* INPUTS: *
'* X: Table of abscissas (n) *
'* Y: Table of ordinates (n) *
'* n: Number of points *
'* XX: Interpolation abscissa value *
'* OUTPUT: *
'* YY: Returned estimation of function for X *
'* DY: Estimated error for YY *
'*****************************************************
Declare NS&,dif!,dift!,C![n&],D![n&],m&,ho!,hp!,w!,whom!
NS& = 1
DIF! = ABS(XX! - X![1])
whileloop n&:i&=&Loop
DIFT! = ABS(XX! - X![1])
IF DIFT! < DIF!
NS& = I&'index of closest table entry
DIF! = DIFT!
ENDIF
C![I&] = Y![I&]'Initialize the C"s and D"s
D![I&] = Y![I&]
endwhile
YY! = Y![NS&]'Initial approximation of Y
NS& = NS& - 1
whileloop n&-1:m&=&Loop
whileloop n&-m&:i&=&Loop
HO! = X![I&] - XX!
HP! = X![I& + M&] - XX!
W! = C![I& + 1] - D![I&]
DEN! = HO! - HP!
IF DEN! = 0
PRINT
PRINT " *** FEHLER: ZWEI STÜTZWERTE WIDERSPRECHEN SICH! *** "
STOP
ENDIF
DEN! = W! / DEN!
D![I&] = HP! * DEN!'Update the C's and D's
C![I&] = HO! * DEN!
endwhile
IF (2*NS&) < (N&-M&)' After each column in the tableau XA is completed,
DY! = C![NS&+1]' we decide which correction, C or D, we want to
ELSE' add to our accumulating value of Y, i.e. which
DY! = D![NS&]' path to take through the tableau, forking up or
NS& = NS& - 1' down. We do this in such a way as to take the
ENDIF' most "straight line" route through the tableau to
' its apex, updating NS accordingly to keep track
YY! = YY! + DY!' of where we are. Diese route keeps the partial
endwhile' approximations centered (insofar as possible) on
' the target X.The last DY added is thus the error
RETURN YY!' indication.
endproc
|
|
|
| Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'... | 05/15/21 ▲ |
|
|
|