English
Source / code snippets

Kubische Gleichung solve to the Formel-method

 

p.specht

The of Gerolamo Cardano the Rechenmeister Tartaglia To Padua entwendete Formel, which selbiger but self the Scipione del Ferro abgeluchst having, becomes - differently as about The Lösungsformel To quadratischen Gleichungen - in our schools hardly taught. Zugegeben: Dass something Reelles get out can, if one two complex numbers verrechnet, was long Time uncharted and counted as "unmöglicher Fall" (lat. casus irreducibilis).
Windowtitle "Kubische Gleichung through the Formel "+\
"By Doctoris med. Gerolimo CARDANO solve, with Probe!"
' (CL) Copyleft 2013-05 by P.woodpecker, Wien. Alpha-Version - NO GEWÄHR!
' Anm.: the Newton-take action is accurate and universell einsetzbar To ca. x^12
font 2:randomize:set("decimals",15)
declare x!,x1!,x2!,x3!,y1!,y2!,y3!,a!,b!,c!,d!,p!,q!,dis!,u!,v!
declare y2r!,y2i!,y3r!,y3i!,x1r!,x1i!,x2r!,x2i!,x3r!,x3i!,phi!,flg&

proc kubrt :parameters w!

    case w!=0:return 0.0
    case w!>0:return w!^(1/3)
    return -1*((-1*w!)^(1/3))

endproc

Proc ArkCos :Parameters w!

    var res!=0

    if w!=1:res!=0

    elseif w!=-1:res!=Pi()

        else :res!= Pi()/2 - ArcTan(w!/Sqrt(1-w!*w!))
        endif :return res!

    ENDPROC

    Start:
    cls rgb(200+rnd(56),200+rnd(56),200+rnd(56))
    Loop:
    print "\n a * x³ + b * x² + c * x + d = 0. "
    Print " Please a, b, c and d prompt: \n"
    print " a = ";:input a!
    print " b = ";:input b!
    print " c = ";:input c!
    print " d = ";:input d!

    if a!=0:sound 2000,200

        Print "\n this is no kubische Gleichung! \n"
        goto "Quadr"

    endif

    p!=3*a!*c!-b!*b!
    q!=2*b!*b!*b!-9*a!*b!*c!+27*a!*a!*d!
    dis!=q!*q!+4*p!*p!*p!

    IF dis!>0' 1 real, 2 konjug. complex Solutions

        u!=1/2*kubrt(-4*q!+4*sqrt(dis!))
        v!=1/2*kubrt(-4*q!-4*sqrt(dis!))
        y1!=u!+v!
        x1!=(y1!-b!)/(3*a!)
        y2r!= -1/2*(u!+v!)
        x2r!=(y2r!-b!)/(3*a!)
        y2i!=sqrt(3)*(u!-v!)/2' * j
        x2i!=y2i!/(3*a!)' * j
        y3r!= -1/2*(u!+v!)
        x3r!=(y3r!-b!)/(3*a!)
        y3i!= -1*sqrt(3)*(u!-v!)/2' * j
        x3i!= y3i!/(3*a!)' * j
        flg&= -2

    ELSEIF dis!=0' 3 real Solutions

        u!=1/2*kubrt(-4*q!)
        v!=1/2*kubrt(-4*q!)
        y1!=2*u!
        x1!=(y1!-b!)/(3*a!)
        y2r!= -1*u!
        x2r!=(y2r!-b!)/(3*a!)
        y2i!=0
        x2i!=0
        x2!=x2r!
        y3r!= -1*u!
        x3r!=(y3r!-b!)/(3*a!)
        y3i!=0
        x3i!=0
        x3!=x3r!
        flg&=2

    ELSEIF dis!<0' 3 different real Solutions

        phi!=ArkCos( -1*q!/(2*sqrt(-1*p!*p!*p!)))
        y1!=sqrt(-p!)*2*cos(phi!/3)
        x1!=(y1!-b!)/(3*a!)
        y2!=sqrt(-p!)*2*cos(phi!/3+2*pi()/3)
        x2!=(y2!-b!)/(3*a!)
        y3!=sqrt(-p!)*2*cos(phi!/3+4*pi()/3)
        x3!=(y3!-b!)/(3*a!)
        flg&=3

    ENDIF

    Print "\n L Ö s u n G : \n"
    Print " The kubische Gleichung  "+\
    if(a!<0," -"," ")+if(abs(a!)=1,"",stature$("%g",abs(a!)))+" x³"+\
    if(b!=0,"",if(b!<0," - "," + ")+stature$("%g",abs(b!))+" x²") +\
    if(c!=0,"",if(c!<0," - "," + ")+stature$("%g",abs(c!))+" x") +\
    if(d!=0,"",if(d!<0," - "," + ")+stature$("%g",abs(d!)))+" = 0 \n hat";

    if flg&= -2

        Print " a real and two konjugiert complex Solutions: "
        print
        print " x1 = ";x1!
        print
        print " x2 = ";x2r!;" + j * ";x2i!
        print " x3 = ";x3r!;" + j * ";x3i!
        print

    elseif flg&= 2

        print " three real Solutions (These can also same his): "
        print
        print " x1 = ";x1!
        print " x2 = ";x2!
        print " x3 = ";x3!
        case (x1!=0) and (x2!=0) and (x3!=0): print " Trivialer drop!"
        print

    elseif flg&= 3

        Print " three different real Solutions ('Casus irreducibilis'): "
        print
        print " x1 = ";x1!
        print " x2 = ";x2!
        print " x3 = ";x3!
        print

    else

        print " Unknown flag status! "
        sound 2000,200
        waitinput
        end

    endif

    print " P R O B E  through bring into action. The Results should always near zero his: "
    print "\n  f(x1) = ";a!*x1!*x1!*x1!+b!*x1!*x1!+c!*x1!+d!
    case (flg&=2) or (flg&=3):print "  f(x2) = ";a!*x2!*x2!*x2!+b!*x2!*x2!+c!*x2!+d!

    if flg&= -2

        print " f(x2r) = ";a!*(x2r!*x2r!*x2r!-3*x2r!*x2i!*x2i!)+b!*(x2r!*x2r!-x2i!*x2i!)+c!*x2r!+d!
        print " f(x2i) = ";a!*(3*x2r!*x2r!*x2i!-x2i!*x2i!*x2i!)+b!*    2*x2r!*x2i!  + c!*x2i!

    endif

    case (flg&=2) or (flg&=3):print "  f(x3) = ";a!*x3!*x3!*x3!+b!*x3!*x3!+c!*x3!+d!

    if flg&= -2

        print " f(x3r) = ";a!*(x3r!*x3r!*x3r!-3*x3r!*x3i!*x3i!)+b!*(x3r!*x3r!-x3i!*x3i!)+c!*x3r!+d!
        print " f(x3i) = ";a!*(3*x3r!*x3r!*x3i!-x3i!*x3i!*x3i!)+b!*    2*x3r!*x3i!  + c!*x3i!

    endif

    waitinput
    case %csrlin<=20:goto "loop"
    goto "Start"
    Quadr:
    case b!=0:goto "Linr"
    print "\n Quadratische Gleichung, resolved according Mitternachtsformel: \n"
    dis!=sqr(c!/(2*b!))-d!/b!

    if dis!=0

        x1!= -1/2*c!/b!
        x2!=x1!
        print " x1 = x2 = "; x1!
        Print " Nullprobe yields: ";b!*x1!*x1!+c!*x!+d!

    elseif dis!>0

        x1!= -1/2*c!/b! + sqrt(dis!)
        x2!= -1/2*c!/b! - sqrt(dis!)
        print " x1 = ";x1!
        print " x2 = ";x2!
        Print "\n Nullprobe: "
        Print "  f(x1) = ";b!*x1!*x1!+c!*x1!+d!
        Print "  f(x2) = ";b!*x1!*x1!+c!*x1!+d!

    elseif dis!<0

        Print " No reellen Solutions, only complex: "
        x1r!= -1/2*c!/b!
        x1i!= sqrt(-1*dis!)
        x2r!= -1/2*c!/b!
        x2i!= -1*sqrt(-1*dis!)
        print " Solution: "
        print " x1 = ";x1r!;" + %j * ";x1i!
        print " x2 = ";x2r!;" + %j * ";x2i!
        print "\n Nullprobe yields: "
        print " f(x1r) = "; b!*(x1r!*x1r!-x1i!*x1i!)+c!*x1r!+d!
        print " f(x1i) = "; 2*b!*x1r!*x1i!+c!*x1i!
        print " f(x2r) = "; b!*(x2r!*x2r!-x2i!*x2i!)+c!*x2r!+d!
        print " f(x2i) = "; 2*b!*x2r!*x2i!+c!*x2i!

    endif

    waitinput :goto "Start"
    Linr:
    case c!=0: goto "Const"
    print "\n Lineare Gleichung with the Solution: \n"
    print " x = ";-1*d!/c!
    print " Nullprobe yields: ";c!*(-1*d!/c!)-d!
    waitinput
    goto "Start"
    Const:
    Print "\n Konstantenvergleich: \n"

    if d!=0:Print " x = 0 ... Triviale Solution! \n"

        else :Print " there's no Solution. \n"

    endif

    waitinput
    goto "Start"
 
XProfan 11
Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'...
05/09/21  
 



Zum Quelltext


Topictitle, max. 100 characters.
 

Systemprofile:

no Systemprofil laid out. [anlegen]

XProfan:

 Posting  Font  Smilies  ▼ 

Please register circa a Posting To verfassen.
 

Topic-Options

586 Views

Themeninformationen

this Topic has 1 subscriber:

p.specht (1x)


Admins  |  AGB  |  Applications  |  Authors  |  Chat  |  Privacy Policy  |  Download  |  Entrance  |  Help  |  Merchantportal  |  Imprint  |  Mart  |  Interfaces  |  SDK  |  Services  |  Games  |  Search  |  Support

One proposition all XProfan, The there's!


My XProfan
Private Messages
Own Storage Forum
Topics-Remember-List
Own Posts
Own Topics
Clipboard
Log off
 Deutsch English Français Español Italia
Translations

Privacy Policy


we use Cookies only as Session-Cookies because of the technical necessity and with us there no Cookies of Drittanbietern.

If you here on our Website click or navigate, stimmst You ours registration of Information in our Cookies on XProfan.Net To.

further Information To our Cookies and moreover, How You The control above keep, find You in ours nachfolgenden Datenschutzerklärung.


all rightDatenschutzerklärung
i want none Cookie