English
Source / code snippets

Matrixinversion with Genauigkeitsermittlung (to Solution linearer Gleichungssysteme)

 

p.specht


Window Title "Matrixinversion"
Font 2:randomize:cls rnd(8^8)
' Q: https://www.rhirte.de/vb/gleichsys.htm#mat
' for XProfan adaptiert of P. woodpecker 2012-04
' Demoware, no How always geartete Gewähr!
Var n&=12'= Lines, Split (Testmatrix-Size)
Declare A![n&,n&],erg$
@MatrixAufruf n&
' Testmatrix with Zufallszahlen occupy.
' subsequently:
' whether The Matrixinversion calculate properly, can simply
' testing, because The Inverse the Inversen must again The
' Ausgangsmatrix yield. in the example becomes therefore The
' most absolute deviation outputted.

Proc @MatrixAufruf : Parameters n&

    Declare i&,j&,Max!,erg$,B![n&,n&],k!

    Whileloop n&:i&=&Loop

        Whileloop n&:j&=&Loop

            A![i&,j&]=(Rnd()-0.5)*1000000
            B![i&,j&]=A![i&,j&]

        Endwhile

    Endwhile

    print "TESTMATRIX:" : @Show A![],n&
    MatInv A![],N&
    print "INVERSE:" : @Show A![],n&
    MatInv A![],N&
    print "INVERSE RÜCKINVERTIERT:" : @Show A![],n&
    ' Fehlerbestimmung and -spending
    Max! = -1

    Whileloop n&:i&=&Loop

        Whileloop n&:j&=&Loop

            If Abs(A![i&,j&] - B![i&,j&]) > Max!

                Max! = Abs(A![i&,j&] - B![i&,j&])

            endif

            'erg$ = erg$ + stature$("%e",A![i&,j&] - B![i&,j&]) + " "

        endwhile

        'erg$ = erg$ + chr$(10)+chr$(13)

    endwhile

    erg$ = erg$ + "\n Größter Error: "+stature$("%e",Max!)
    print "DIFFERENZ:" :print erg$
    waitinput
    Clear B![]

Endproc

' Eigentliche Inversion

Proc MatInv :parameters Mat![],N&

    Declare Hlp1&[n&],Hlp2&[n&],Hlp3&[n&]
    Declare Max!,T!,i&,j&,k&,ix&,iy&

    Whileloop n&:i&=&Loop

        Hlp3&[i&]=0

    Endwhile

    Whileloop n&:i&=&Loop

        ' Search the most element
        Max! = 0

        Whileloop n&:j&=&Loop

            If Hlp3&[j&]<>1

                Whileloop n&:k&=&Loop

                    If (Hlp3&[k&]<>1) AND (Max! <= Abs(Mat![j&,k&]))

                        iy& = k&
                        ix& = j&
                        Max! = Abs(Mat![j&,k&])

                    EndIf

                endwhile

            EndIf

        endwhile

        Hlp3&[iy&] = Hlp3&[iy&] + 1
        'Pivotisierung

        If ix&<>iy&

            Whileloop n&:j&=&Loop

                t!=Mat![ix&,j&]
                Mat![ix&,j&]=Mat![iy&,j&]
                Mat![iy&,j&]=t!

            Endwhile

        EndIf

        Hlp1&[i&] = ix&
        Hlp2&[i&] = iy&
        'control on mögliches vanish one Hauptachsenwertes

        If Abs(Mat![iy&,iy&]) < 10^-300

            Print "Abbruch, Inversion you don't say so!"
            Waitinput :End

        Else

            T! = Mat![iy&,iy&]
            Mat![iy&,iy&] = 1

            Whileloop n&:j&=&Loop

                Mat![iy&,j&] = Mat![iy&,j&] / T!

            EndWhile

            Whileloop n&:j&=&Loop

                If j&<>iy&

                    T! = Mat![j&,iy&]
                    Mat![j&,iy&] = 0

                    Whileloop n&:k&=&Loop

                        Mat![j&,k&] = Mat![j&,k&]- Mat![iy&,k&] * T!

                    endwhile

                EndIf

            endwhile

        EndIf

    endwhile

    'Rücktausch

    Whileloop n&:i&=&Loop

        j& = N& + 1 - i&

        If Hlp1&[j&]<>Hlp2&[j&]

            ix& = Hlp1&[j&]
            iy& = Hlp2&[j&]

            Whileloop n&:k&=&Loop

                T!=Mat![k&,ix&]
                Mat![k&,ix&]=Mat![k&,iy&]
                Mat![k&,iy&]=T!

            endwhile

        EndIf

    endwhile

    'Hilfsspeicher enable
    Clear Hlp1&[],Hlp2&[],Hlp3&[]
    'to spending ...

ENDPROC

' Show the Matrix

Proc Show :parameters A![],n&

    declare i&,j&

    Whileloop n&:i&=&Loop

        Whileloop n&:j&=&Loop

            erg$ = erg$ + stature$("%e",A![i&,j&])+" "

        Endwhile

        erg$ = erg$+chr $(10)+chr $(13)

    Endwhile

    print erg$
    waitinput 1000
    erg$=""

ENDPROC

' an important application the Matrizeninversion is the
' Solution of linearen Gleichungssystemen. this
' Lösungsverfahren has Yes whom immensen benefit, sofern one
' The invertierte Matrix knows, particularly elegant To his.
' because if Ax = b the Gleichungssystem in vektorieller
' spelling describe, then is x = inv(A)*A*x = inv(A)*b
' already The Solution. therefore:

Proc InvMat : parameters n&,a![],x![]

    Declare i%,j%
    MatInv a![],n&

    WhileLoop n&:i&=&Loop

        x!(i&)=0

        Whileloop n&:j&=&Loop

            x!(i&)=x!(i&)+a![i&,j&] * a![j&,n&+1]'<<< rights Page d.LGS

        Endwhile

    Endwhile

Endproc

 
XProfan 11
Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'...
05/07/21  
 



Zum Quelltext


Topictitle, max. 100 characters.
 

Systemprofile:

no Systemprofil laid out. [anlegen]

XProfan:

 Posting  Font  Smilies  ▼ 

Please register circa a Posting To verfassen.
 

Topic-Options

550 Views

Themeninformationen

this Topic has 1 subscriber:

p.specht (1x)


Admins  |  AGB  |  Applications  |  Authors  |  Chat  |  Privacy Policy  |  Download  |  Entrance  |  Help  |  Merchantportal  |  Imprint  |  Mart  |  Interfaces  |  SDK  |  Services  |  Games  |  Search  |  Support

One proposition all XProfan, The there's!


My XProfan
Private Messages
Own Storage Forum
Topics-Remember-List
Own Posts
Own Topics
Clipboard
Log off
 Deutsch English Français Español Italia
Translations

Privacy Policy


we use Cookies only as Session-Cookies because of the technical necessity and with us there no Cookies of Drittanbietern.

If you here on our Website click or navigate, stimmst You ours registration of Information in our Cookies on XProfan.Net To.

further Information To our Cookies and moreover, How You The control above keep, find You in ours nachfolgenden Datenschutzerklärung.


all rightDatenschutzerklärung
i want none Cookie