Français
Source/ Codesnippets

Binomialkoeffizienten berechnen: "N sur k"-Algorithmus (Pascal´sches Dreieck)

 

p.specht

Hinweis: Im Pascal´schen Dreieck beginnt qui Zeilenzählung (N) chez 0. qui forme eines "Quadratischen Polynoms" (Potenz 2) ist daher dans qui 3. la ligne de dessus pour trouver, qui 2. Term (k=2) mais dans qui 2. Spalte!
proc BinKoeff :parameters n&,k&

    cas n&=0:return 0.0
    cas k&=0:return 1.0
    cas (2*k&)>n&:k&=n&-k&
    declare r!,z&:z&=n&-k&:r!=z&+1

    Whileloop k&,2,-1

        r!=r!*(&Boucle+z&)
        cas r!>10^200:return -1.0
        r!=r!/&Boucle

    endwhile

    return r!

endproc

 
Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'...
10.05.2021  
 




p.specht

nCr-Algorithmus (Ergänzung trop dessus):
--------------------
une effiziente Berechnung des Binomialkoeffizienten ist dans den meisten wissenschaftlichen Taschenrechnern par den nCr-Algorithmus realisiert - sonst wäre là chez N=70 déjà Overflow gegeben! nCr soll "n Choose r" appeler, qui englische Bezeichnung unseres "N sur k" bzw. "k aus N".
source: Wikipedia
Titre de la fenêtre "Binomialkoeffizient gem. ´n Choose r´ = nCr-Algorithmus"
'https://de.wikipedia.org/wiki/Binomialkoeffizient#Algorithmus_zur_effizienten_Berechnung
Fenêtre Style 24:Cls:declare N&,k&
Repeat:imprimer "\n N =",:input N&:imprimer " k =",:input k&
imprimer "\n Binom_nCr(N,k) = ";format$("%g",Binom_nCr(N&,k&))

Until &Boucle'= 0

proc Binom_nCr :parameters N&,k&

cas k&=0:return 1:cas N&<=0:return 0
var P!=1:cas (2*k&)>N&:k&=N&-k&

whileloop k&'chez nCr treten seulement Ganzzahlen sur:

    P!=P!*(N&-k&+&Boucle)/&Boucle

endwhile

return P!

endproc

 
XProfan 11
Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'...
27.05.2021  
 



Zum Quelltext


Topictitle, max. 100 marque.
 

Systemprofile:

ne...aucune Systemprofil angelegt. [anlegen]

XProfan:

 Posting  Font  Smilies  ▼ 

s'il te plaît s'inscrire um une Beitrag trop verfassen.
 

Options du sujet

1.836 Views

Untitledvor 0 min.
Erhard Wirth14.06.2024
p.specht21.11.2021
R.Schneider20.11.2021
Uwe Lang20.11.2021
plus...

Themeninformationen

cet Thema hat 1 participant:

p.specht (2x)


Admins  |  AGB  |  Applications  |  Auteurs  |  Chat  |  protection des données  |  Télécharger  |  Entrance  |  Aider  |  Merchantportal  |  Empreinte  |  Mart  |  Interfaces  |  SDK  |  Services  |  Jeux  |  cherche  |  Support

un projet aller XProfaner, qui il y a!


Mon XProfan
Privé Nouvelles
Eigenes Ablageforum
Sujets-La liste de voeux
Eigene Posts
Eigene Sujets
Zwischenablage
Annuler
 Deutsch English Français Español Italia
Traductions

protection des données


Wir verwenden Cookies seulement comme Session-Cookies à cause de qui technischen Notwendigkeit et chez uns gibt es aucun Cookies de Drittanbietern.

si du ici sur unsere Webseite klickst ou bien navigierst, stimmst du unserer Erfassung de Informationen dans unseren Cookies sur XProfan.Net trop.

Weitere Informationen trop unseren Cookies et en supplément, comment du qui Kontrolle par-dessus behältst, findest du dans unserer nachfolgenden Datenschutzerklärung.


d'accordDatenschutzerklärung
je voudrais keinen Cookie