Français
Source/ Codesnippets

Funktionen Konstanten mathématique Mathematische

 

KompilierenMarqueSéparation
Source wurde am 15.07.2007 aus der MMJ-Quellcodesammlung (Dietmar Horn) in die Babyklappe auf XProfan.Com abgelegt:
Mathematik: Mathematische Funktionen Und Konstanten
MessageBox(Dieser Code beinhaltet nur Funktionen und ist selbständig nicht lauffähig!,I N F O,4160)
end
Mathematik
Autor: Michael Wodrich
Konstanten
Def !Pi 3.14159265358979323846   Kreiszahl Pi  (höhere Genauigkeit)
Def !HalfPi 1.57079632679489661923   Pi / 2
Def !TwoPi 6.28318530717958647692   Pi * 2
Def !KehrPi 0.318309886183790671538035357467728   1 / Pi
Def !PiDiv180 0.0174532925199432957692   Pi / 180   (Grad- nach Bogenmaß) (Degree to Radian)
Def !f180DivPi 57.2957795130823208768463643441911   180 / Pi   (Bogenmaß nach Grad) (Radian to Degree)
Funktionen
Def @DegToRad(1) @Mul(@!(1),!PiDiv180)
Degree -> Radian  (Grad- nach Bogenmaß)
z.B.:  erg! = Sin(DegToRad(grad!))
Def @RadToDeg(1) @Mul(@!(1),!f180DivPi)
Radian -> Degree  (Bogenmaß nach Grad)
Def @Min!(2) @If(@LT(@!(1),@!(2)),@!(1),@!(2))
Def @Max!(2) @If(@GT(@!(1),@!(2)),@!(1),@!(2))
ermittelt das Minimum und Maximum zweier Float-Werte.
Def @Min&(2) @If(@LT(@&(1),@&(2)),@&(1),@&(2))
Def @Max&(2) @If(@GT(@&(1),@&(2)),@&(1),@&(2))
ermittelt das Minimum und Maximum zweier LongInt-Werte.
Def @SHL(2) (@&(1) << @&(2))
<<  bitweise nach links schieben (entspricht einer Multiplikation mit 2)
Def @SHR(2) (@&(1) >> @&(2))
>>  bitweise nach rechts schieben (entspricht einer Division durch 2)
Def @Odd(1) @If(@Equ(((@&(1) >> 1) << 1),@&(1)),1,0)
Odd - Ungerade
Def @Neg(1) @Mul(@!(1),(-1.0))
Negation
Def @Cpl2(1) @Add(@Mul(@!(1),(-1.0)),1)
Zweierkomplement
Def @Sgn!(1) @If(@LT(@!(1),0.0),-1.0,@If(@GT(@!(1),0.0),1.0,0.0))
Def @Sgn&(1) @If(@LT(@&(1),0),-1,@If(@GT(@&(1),0),1,0))
Signum
Def @Kubik(1) @Mul(@Sqr(@!(1)),@!(1))
x^3 == x³ == x² * x == x * x * x
Def @Log(2) @Div(@Ln(@!(1)),@Ln(@%(2)))
Logarithmus zur Basis N  ==  Log(zahl!,Basis%) == Ln(x!) / Ln(N%)
Def @Log10(1) @Div(@Ln(@!(1)),@Ln(10.0))
Logarithmus zur Basis 10  ==  Ln(x) / Ln(10)
Def @Lg(1) @Div(@Ln(@!(1)),@Ln(10.0))     (Profan-Funktion)
Logarithmus zur Basis 10  ==  Ln(x) / Ln(10)
Def @Log2(1) @Div(@Ln(@!(1)),@Ln(2.0))
Logarithmus zur Basis 2  ==  Ln(x) / Ln(2)
Def @Ld(1) @Div(@Ln(@!(1)),@Ln(2.0))
Logarithmus zur Basis 2  ==  Ln(x) / Ln(2)
Def @Exp10(1) @Exp(@Mul(@!(1),@Ln(10.0))
10^x   Power of ten
Def @Exp2(1) @Exp(@Mul(@!(1),@Ln(2.0))
2^x   Power of two
Def @Exp(1) ...     (Profan-Funktion)
e^x   Power of Euler
Def @Sin(1) @Sqrt(@Sub(1.0,@Sqr(@Cos(@!(1)))))     (Profan-Funktion)
Sinus   y = Sqrt( 1 - Cos(x)^2 )
Def @Cos(1) ...     (Profan-Funktion)
Cosinus
Def @Tan(1) @Div(@Sin(@!(1)),@Cos(@!(1)))     (Profan-Funktion)
Tangens   y = Sin(x) / Cos(x)
Def @Cot(1) @Div(@Cos(@!(1)),@Sin(@!(1)))     (Profan-Funktion)
Cotangens   y = Cos(x) / Sin(x)  oder  y = 1 / Tan(x)
Def @Sec(1) @Div(1.0,@Cos(@!(1)))
Sekans   y = 1 / Cos(x)
Def @Csc(1) @Div(1.0,@Sin(@!(1)))
Cosekans   y = 1 / Sin(x)
Def @ArcSin(1) @Sub(!HalfPi,@ArcCos(@!(1)))
Arcus Sinus   y = 0.5 * Pi - ArcCos(x)  oder  y = ArcTan(x/Sqrt(1-Sqr(x)))
Def @ArcCos(1) @Mul(2.0,@ArcTan(Sqrt(@Div(@Sub(1.0,@!(1)),@Add(1.0,@!(1))))))
Arcus Cosinus y = 2 * ArcTan( Sqrt( (1-x) / (1+x) ) )
y = ArcTan(-x / Sqrt(1-Sqr(x))) + 2 * ArcTan(1)
Def @ArcTan(1) ...     (Profan-Funktion)
Arcus Tangens
Def @ArcCot(1) @Sub(!HalfPi,@ArcTan(@!(1)))
Arcus Cotangens y = 0.5 * Pi - ArcTan(x)
y = ArcTan(x) + 2 * ArcTan(1)
Def @ArcSec(1) @ArcCos(@Div(1.0,@!(1)))
Arcus Sekans y = ArcCos( 1/x )
y = ArcTan(x/Sqrt(Sqr(x)-1)) + Sgn(x-1) * 2 * ArcTan(1)
Def @ArcCsc(1) @ArcSin(@Div(1.0,@!(1)))
Arcus Cosekans y = ArcSin( 1/x )
y = ArcTan(x/Sqrt(Sqr(x)-1)) + (Sgn(x)-1) * 2 * ArcTan(1)
Def @XHypSub(1) @Sub(@Exp(@!(1)),@Exp(@Neg(@!(1))))
Hilfsfunktion   y = Exp(x) - Exp(-x)
Def @XHypAdd(1) @Add(@Exp(@!(1)),@Exp(@Neg(@!(1))))
Hilfsfunktion   y = Exp(x) + Exp(-x)
Def @Sinh(1) @Div(@XHypSub(@!(1)),2.0)
Hyperbel Sinus   y = (Exp(x) - Exp(-x)) / 2
Def @Cosh(1) @Div(@XHypAdd(@!(1)),2.0)
Hyperbel Cosinus   y = (Exp(x) + Exp(-x)) / 2
Def @Tanh(1) @Div(@Sinh(@!(1)),@Cosh(@!(1)))
Hyperbel Tangens   y = Sinh(x) / Cosh(x)
Def @Coth(1) @Div(@Cosh(@!(1)),@Sinh(@!(1)))
Hyperbel Cotangens   y = Cosh(x) / Sinh(x)
Def @Sech(1) @Div(2.0,@XHypAdd(@!(1)))
Hyperbel Sekans   y = 2 / (Exp(x) + Exp(-x))
Def @Csch(1) @Div(2.0,@XHypSub(@!(1)))
Hyperbel Cosekans   y = 2 / (Exp(x) - Exp(-x))
Def @ArcSinh(1) @Ln(@Add(@!(1),@Sqrt(@Add(@Sqr(@!(1)),1.0))))
Hyperbel Arcus Sinus   y = Ln( x + Sqrt(x²+1) )
Def @ArcCosh(1) @Ln(@Add(@!(1),@Sqrt(@Sub(@Sqr(@!(1)),1.0))))
Hyperbel Arcus Cosinus   y = Ln( x + Sqrt(x²-1) )
Def @ArcTanh(1) @Div(@Ln(@Div(@Add(1.0,@!(1)),@Sub(1.0,@!(1)))),2.0)
Hyperbel Arcus Tangens   y = Ln( (1+x) / (1-x) ) / 2
Def @ArcCoth(1) @Div(@Ln(@Div(@Add(@!(1),1.0),@Sub(@!(1),1.0))),2.0)
Hyperbel Arcus Cotangens   y = Ln( (x+1) / (x-1) ) / 2
Def @ArcSech(1) @Ln(@Div(@Add(@Sqrt(@Add(@Mul(@Neg(@!(1)),@!(1)),1.0)),1.0),@!(1)))
Hyperbel Arcus Sekans   y = Ln( (Sqrt(-x*x+1)+1) / x )
Def @ArcCsch(1) @Ln(@Div(@Add(@Mul(@Sgn(@!(1)),@Sqrt(@Add(@Sqr(@!(1)),1.0))),1.0),@!(1)))
Hyperbel Arcus Cosekans   y = Ln( ( Sgn(x) * Sqrt(x²+1) + 1 )
class=s2>/ x)
 
16.07.2007  
 



Zum Quelltext


Topictitle, max. 100 marque.
 

Systemprofile:

ne...aucune Systemprofil angelegt. [anlegen]

XProfan:

 Posting  Font  Smilies  ▼ 

s'il te plaît s'inscrire um une Beitrag trop verfassen.
 

Options du sujet

2.164 Views

Untitledvor 0 min.
Michael W.23.12.2016
Rainer Hoefs07.07.2015

Themeninformationen

cet Thema hat 1 participant:

unbekannt (1x)


Admins  |  AGB  |  Applications  |  Auteurs  |  Chat  |  protection des données  |  Télécharger  |  Entrance  |  Aider  |  Merchantportal  |  Empreinte  |  Mart  |  Interfaces  |  SDK  |  Services  |  Jeux  |  cherche  |  Support

un projet aller XProfaner, qui il y a!


Mon XProfan
Privé Nouvelles
Eigenes Ablageforum
Sujets-La liste de voeux
Eigene Posts
Eigene Sujets
Zwischenablage
Annuler
 Deutsch English Français Español Italia
Traductions

protection des données


Wir verwenden Cookies seulement comme Session-Cookies à cause de qui technischen Notwendigkeit et chez uns gibt es aucun Cookies de Drittanbietern.

si du ici sur unsere Webseite klickst ou bien navigierst, stimmst du unserer Erfassung de Informationen dans unseren Cookies sur XProfan.Net trop.

Weitere Informationen trop unseren Cookies et en supplément, comment du qui Kontrolle par-dessus behältst, findest du dans unserer nachfolgenden Datenschutzerklärung.


d'accordDatenschutzerklärung
je voudrais keinen Cookie