WindowTitle "Polynom-Regression mit der Methode der kleinsten Quadrate"
'---------------------------------------------------
' VisualBasic-Original (C) Prof.em. Rolf HIRTHE, https://www.rhirte.de/vb/home.htm
' Übertragen nach XProfan-11.2a 2014-10 by P.Specht, Wien; Ohne jede Gewähr!
'---------------------------------------------------
WindowStyle 24:Window 0,0-%maxx,%maxy-40:randomize:set("decimals",16):font 0
print "\n\n Die Gauss'sche Methode der minimierten mittleren quadratischen Abweichung"
print " wird hier dazu verwendet, eine Polynomkurve zwischen Messpunkte einzupassen. "
print " Ziel ist, durch Anpassung des Polynomgrades trotz Messfehlern die dem "
print " Punktverlauf best-angepasste Funktion als 'Gesetzmäßigkeit' zu finden.\n"
Declare a![50,51],b![50,51],x![50],y![50],Xv![25],Yv![25],grad&,paar&
'---------------------------------------------------
' Einige Messpunkte P(xv,yv) als Testbeispiel:
'---------------------------------------------------
paar&=5
Xv![1] = 1 : Yv![1]= -0.3
Xv![2] = 1.9 : Yv![2] = 0.3
Xv![3] = 2.9 : Yv![3] = 1.3
Xv![4] = 4 : Yv![4] = 3.3
Xv![5] = 5.1 : Yv![5] = 4.3
'---------------------------------------------------
grad& = 2' des Polynoms
'---------------------------------------------------
font 2
Print "\n\n Anpassung eines Polynoms "+str$(grad&)+". Grades"
print " an ";paar&;" Messpunkte (Einprogrammmiertes Beispiel)\n\n"
'---------------------------------------------------
print AUSGLEICH(paar&,grad&,Xv![],Yv![])
'---------------------------------------------------
'Hier potuto eine grafische Ausgabe den Kurvenverlauf zeigen
waitinput
END
'===================================================
Proc AUSGLEICH :parameters paar&,Pgrad&,Xv![],Yv![]
declare i&,j&,k&,Ggrad&,Mat![25,25],Fak!,A![25],sig!,txt$
If paar& < (Pgrad& + 1)'Vorbereitende Eingaben
txt$=" FEHLER: Zahl der Wertepaare nicht ausreichend!"
goto "Exit_Sub"
EndIf
Ggrad&=Pgrad&+1
Whileloop Ggrad&:i&=&Loop
WhileLoop Ggrad&+1:j&=&Loop
Mat![i&,j&]=0
endwhile
endwhile
'---------------------------------------------------
Mat![1,1]=paar&' Aufbau der Matrix
WhileLoop paar&:i&=&Loop
Mat![1,Ggrad&+1]=Mat![1,Ggrad&+1]+Yv![i&]
Fak!=1
Whileloop 2,Ggrad&:j&=&Loop
Fak! = Fak! * Xv![i&]
Mat![1,j&]=Mat![1,j&]+Fak!
Mat![j&,Ggrad&+1] = Mat![j&,Ggrad&+1]+Fak!*Yv![i&]
Endwhile
Whileloop 2,Ggrad&:j&=&Loop
Fak! = Fak! * Xv![i&]
Mat![j&,Ggrad&]=Mat![j&,Ggrad&]+Fak!
endwhile
endwhile
whileloop 2,Ggrad&:i&=&Loop
WhileLoop Ggrad&-1:j&=&Loop
Mat![i&,j&]=Mat![i&-1,j&+1]
endwhile
endwhile
'---------------------------------------------------
' Aufruf der Routine zur Lösung des lin. GS
GAUSS Ggrad&,Mat![],a![]
'---------------------------------------------------
txt$=""'Ergebnisanzeige
WhileLoop Ggrad&:i&=&Loop
txt$=txt$+" a"+str$(int(i&-1))+" = "+str$(a![i&])+"\n"
endwhile
txt$=txt$+"\n"
sig!=0
'---------------------------------------------------
' Berechnung und Anzeige zur Qualität der Anpassung
'---------------------------------------------------
whileloop paar&:i&=&Loop
Fak! = a![Ggrad&]
WhileLoop Ggrad&-1,1,-1:j&=&Loop
Fak! = a![j&] + Xv![i&] * Fak!
endwhile
sig!=sig!+sqr(Yv![i&]-Fak!)
txt$=txt$+" y("+str$(i&)+")="+str$(Yv![i&])+" -> "+format$("%g",Fak!)+"\n"
endwhile
txt$=txt$+"\n Durchschnittliche Abweichung [dsig] = " + str$(Sqrt(sig!/(paar&-2)))+"\n"
'---------------------------------------------------
Exit_Sub:
return txt$
EndProc
Proc Gauss :parameters n&,A![],x![]
declare i&,j&,k&,jmax&,kmax&,merk&[]
declare s!,max!,skal![]
setsize merk&[],n&
setsize skal![],n&
'---------------------------------------------------
' Reihenfolge sichern
whileloop n&:i&=&Loop
merk&[i&] = i&
endwhile
'---------------------------------------------------
' Normalisierung
whileloop n&:i&=&Loop
s! = 0
whileloop n&:j&=&Loop
s! = s! + Abs(A![i&,j&])
endwhile
skal![i&]=1/s!
endwhile
'---------------------------------------------------
' Vorwärtselimination
whileloop n&-1:k&=&Loop
max! = skal![k&]*Abs(A![k&,k&])
kmax& = k&'Spalte mit max
jmax& = k&'Zeile mit max
'Pivotzelle suchen:
whileloop k&,n&:j&=&Loop
whileloop k&,n&:i&=&Loop
If (skal![j&]*Abs(A![j&,i&]))> max!
jmax& = j&
kmax& = i&
max! = skal![j&]*Abs(A![j&,i&])
EndIf
endwhile
endwhile
'---------------------------------------------------
If jmax& <> k&' Zeilentausch, wenn nötig
whileloop k&,n&+1:j&=&Loop
s! = A![k&,j&]
A![k&,j&] = A![jmax&,j&]
A![jmax&,j&] = s!
endwhile
s! = skal![k&]
skal![k&] = skal![jmax&]
skal![jmax&] = s!
EndIf
'---------------------------------------------------
If kmax& <> k&'Spaltentausch, wenn nötig
whileloop n&:i&=&Loop
s! = A![i&,k&]
A![i&,k&] = A![i&,kmax&]
A![i&,kmax&] = s!
endwhile
j& = merk&[k&]
merk&[k&] = merk&[kmax&]
merk&[kmax&] = j&
EndIf
'---------------------------------------------------
' eigentliche Elimination
whileloop k&+1,n&:i&=&Loop
s! = A![i&,k&]/A![k&,k&]
A![i&,k&]=0
whileloop k&+1,n&+1:j&=&Loop
A![i&,j&] = A![i&,j&] - s! * A![k&,j&]
endwhile
endwhile
endwhile
'---------------------------------------------------
' Auflösung rückwärts
x![merk&[n&]] = A![n&,n&+1]/A![n&,n&]
whileloop n&-1,1,-1:i&=&Loop
s! = A![i&,n&+1]
whileloop i&+1,n&:j&=&Loop
s! = s! - A![i&,j&]*x![merk&[j&]]
endwhile
x![merk&[i&]]=s!/A![i&,i&]
endwhile
Endproc