| |
|
|
p.specht
| Die Umkehrfunktion per die einseitige Summenverteilung der Gauss'schen Glockenfunktion weist in Tabellen eine Genauigkeit von 6-7 Stellen auf. Es geht noch genauer, solange die jeweilige Maschinenpräzision mitspielt: Die nachstehende Variante ist durch Aufteilung auf zwei unterschiedliche Reihenentwicklungen per die Bereiche um die Mitte und an den Flügeln der Glockenkurve garantiert auf 9 Stellen genau, also im ppm-(parts per million)-Bereich. Und trotzdem eine halbwegs flotte Demo!
WindowTitle "Inverse Normalverteilung"
' Fortran Source: ren-raw chen, rutgers business school: Normal Distribution Inversed
' Transposed to XProfan-11.2a (CL) 2014-10 by P. Specht, Wien
' No Warranty whatsoever! Keine wie auch immer geartete Gewähr!
WindowStyle 24:set("decimals",17):declare p$:CLS
doitagain:
Print " Gewünschte Eintrittswahrscheinlichkeit [%]?: ";:input p$:case p$="":end
print InvNormDist(val(p$)/100);" * Sigma":if %csrlin>40:waitinput:cls:endif
goto "doitagain"
proc InvNormDist :parameters p!
if p!<0:Print "*** Error: Negative Wahrscheinlichkeiten?***":return -999999:beep:endif
if p!>0.99999999999999994:Print "*** Abs.Sicherheit nur bei Abdeckung bis +Inf!***":return 10^53:endif
if p!<val("1E-53"):Print "*** Sicher kein Eintritt? Nur bei -Inf!***":return val("-1E53"):endif
' Source: ren-raw chen, rutgers business school: ' normal distribution inversed
' (translated from https://home.online.no/~pjacklam/notes/invnorm by john herrero)
declare p_low!,p_high!, z!,q!,r!
declare a1!,a2!,a3!,a4!,a5!,a6!, b1!,b2!,b3!,b4!,b5!
declare c1!,c2!,c3!,c4!,c5!,c6!, d1!,d2!,d3!,d4!
a1!=-39.6968302866538:a2!=220.946098424521:a3!=-275.928510446969:a4!=138.357751867269
a5!=-30.6647980661472:a6!=2.50662827745924:b1!=-54.4760987982241:b2!=161.585836858041
b3!=-155.698979859887:b4!=66.8013118877197:b5!=-13.2806815528857:c1!=-0.00778489400243029
c2!=-0.322396458041136:c3!=-2.40075827716184:c4!=-2.54973253934373
c5!=4.37466414146497:c6!=2.93816398269878:d1!=0.00778469570904146
d2!=0.32246712907004:d3!=2.445134137143:d4!=3.75440866190742:p_low!=0.02425:p_high!=1-p_low!
case p! <p_low!: goto "g201"
case p!>=p_low!: goto "g301"
g201:
q!=sqrt(-2*ln(p!))
z!=(((((c1!*q!+c2!)*q!+c3!)*q!+c4!)*q!+c5!)*q!+c6!)/ \
((((d1!*q!+d2!)*q!+d3!)*q!+d4!)*q!+1)
goto "g204"
g301:
case (p!>=p_low!) and (p!<p_high!): goto "g202"
case p!>p_high!: goto "g302"
g202:
q!=p!-0.5
r!=q!*q!
z!=(((((a1!*r!+a2!)*r!+a3!)*r!+a4!)*r!+a5!)*r!+a6!)*q! / \
(((((b1!*r!+b2!)*r!+b3!)*r!+b4!)*r!+b5!)*r!+1)
goto "g204"
g302:
case (p!>p_high!) and (p!<1): goto "g203"
g203:
q!=sqrt(-2*ln(1-p!))
z!=-(((((c1!*q!+c2!)*q!+c3!)*q!+c4!)*q!+c5!)*q!+c6!) / \
((((d1!*q!+d2!)*q!+d3!)*q!+d4!)*q!+1)
g204:
return z!
endproc
|
|
|
| XProfan 11Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'... | 15.05.2021 ▲ |
|
|
|