Deutsch
Quelltexte/ Codesnippets

Gauss'sche Glockenkurve: Normalverteilte Zufallsvariable erzeugen

 

p.specht

Der ACM-Algorithm 488 ist ein bekanntes Verfahren zur Erzeugung einer Normalverteilten Zufallsvariable. Eigentlich handelt es sich nur um ein Höhenfilter für XProfans recht gut gleichverteilte RND()-Funktion. Irgend jemand sollte mal die zeitfressenden GOTOs rausbügeln... Für kommerziellen Einsatz bestehen Urheberrechte von ACM!
WindowTitle "Algorithm 488: Gauss-Random Pseudozufallsgenerator"
' Fortran-Quelle und Urheberrechtsträger: Algorithm 488 of collected algorithms
' (C) ACM: https://www.acm.org/ , Algorithm appeared in comm. acm, vol. 17, no. 12, p. 704.
' Veröffentlicht in https://www.netlib.org/toms/
' Test for Migration to XProfan11.2a, 2014-10 by P.Specht, Wien; Ohne jede Gewähr!
WindowStyle 24:Window 0,0-%maxx,%maxy-40:randomize:font 2
var xh&=width(%hwnd)/2:var yh&=height(%hwnd)*9/10
usepen 0,1,0:line 0,yh& - 2*xh&,yh&:line xh&,0 - xh&,2*yh&
'
' Function GRand() 'Gauss-Rnd (Initialisierung ausgelagert als GRandInit)
'
' Except on the first call grand returns a pseudo-random number having a gaussian
' (i.e.normal) distribution with zero mean and unit standard deviation.
' Thus, the density is  f(x) = exp(-0.5*x**2)/sqrt(2.0*pi). the first call
' initializes grand and returns zero. The parameter n is dummy.
' gRand calls a function rand, and it is assumed that successive calls to rand(0)
' give independent pseudo-random numbers distributed uniformly on (0,1), possibly
' including 0 (but not 1). the method used was suggested by von neumann, and
' improved by forsythe, ahrens, dieter and brent.
' on the average there are 1.37746 calls of rand for each call of grand.
' Warning - dimension and data statements below are machine-dependent.
' Dimension of d must be at least the number of bits in the fraction of a
' floating-point number. Thus, on most machines the data statement below
' can be truncated.
' if the integral of sqrt(2.0/pi)*exp(-0.5*x**2) from
' a(i) to infinity is 2^(-i), then d(i) = a(i) - a(i-1).
GRandInit:
declare d$[],d![],u!:d$[]=explode( \
"0,0.674489750,0.475859630,0.383771164,0.328611323,0.291142827,0.263684322,"+\
"0.242508452,0.225567444,0.211634166,0.199924267,0.189910758,0.181225181,"+\
"0.173601400,0.166841909,0.160796729,0.155349717,0.150409384,0.145902577,"+\
"0.141770033,0.137963174,0.134441762,0.131172150,0.128125965,0.125279090,"+\
"0.122610883,0.120103560,0.117741707,0.115511892,0.113402349,0.111402720,"+\
"0.109503852,0.107697617,"+\
"0.105976772,0.104334841,0.102766012,0.101265052,0.099827234,0.098448282,"+\
"0.097124309,0.095851778,0.094627461,0.093448407,0.092311909,0.091215482,"+\
"0.090156838,0.089133867,0.088144619,0.087187293,0.086260215,0.085361834,"+\
"0.084490706,0.083645487,0.082824924,0.082027847,0.081253162,0.080499844,"+\
"0.079766932,0.079053527,0.078358781,0.077681899" , "," )

whileloop 0,60:d![&Loop]=val(d$[&Loop])'::print &Loop,format$("%g",d![&Loop])

    endwhile:clear d$[]'::waitinput
    ' end of machine-dependent statements, but:
    ' u must be preserved between calls!
    GLOCKENKURVE_DARSTELLEN:
    Declare cnt&,grnd!,idx&,h&[2*xh&],diehöllezufriert&

    Whileloop 200000:cnt&=&Loop

        grnd!=GRand()
        idx&=xh&+(xh&*grnd!/5)
        h&[idx&]=h&[idx&]+1

        if abs(Grnd!)<0.002

            locate 2,2:Print cnt&,tab(10);format$("%g",grnd!);"    ";:moveto 0,yh&
            usepen 0,1,rgb(rnd(255),rnd(255),h&[idx&])'cnt&,0,h&[idx&])

            whileloop 0,2*xh&:lineto &Loop,yh&-h&[&Loop]

            endwhile

        endif

    Endwhile

    beep
    locate 2,2:Print cnt&,tab(10);format$("%g",grnd!);"    ";
    waitinput
    end

    proc GRand

        declare a!,i&,v!,w!,grand!
        ' initialize displacement a and counter i.
        a! = 0.0
        i& = 0
        ' increment counter and displacement if leading bit of u is one.
        g10:
        u!=u!+u!
        case u!<1:goto "g20"
        u!=u!-1
        inc i&
        a!=a!-d![i&]
        goto "g10"
        ' form w uniform on 0 < w < d(i+1) from u.
        g20:
        w! = d![i&+1]*u!
        ' form v = 0.5*((w-a)**2 - a**2). note that 0 < v < log(2).
        v! = w!*(0.5*w!-a!)
        ' generate new uniform u.
        g30:
        u! = rnd()
        ' accept w as a random sample if v! < u!
        case v!<u!: goto "g40"
        ' generate random v.
        v! = rnd()
        ' loop if u .gt. v.
        case u!>v!:goto "g30"
        ' reject w and form a new uniform u from v and u.
        u! = (v!-u!)/(1-u!)
        goto "g20"
        ' form new u (to be used on next call) from u and v.
        g40:
        u! = (u!-v!)/(1-v!)
        ' use first bit of u for sign, return normal variate.
        u!=u!+u!
        case u!<1:goto "g50"
        u! = u! - 1
        grand! = w!-a!
        return grand!
        g50:
        grand! = a! - w!
        return grand!

    endproc

 
XProfan 11
Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'...
16.05.2021  
 



Zum Quelltext


Thementitel, max. 100 Zeichen.
 

Systemprofile:

Kein Systemprofil angelegt. [anlegen]

XProfan:

 Beitrag  Schrift  Smilies  ▼ 

Bitte anmelden um einen Beitrag zu verfassen.
 

Themenoptionen

1.457 Betrachtungen

Unbenanntvor 0 min.
p.specht21.11.2021
R.Schneider20.11.2021
Uwe Lang20.11.2021
Manfred Barei19.11.2021
Mehr...

Themeninformationen

Dieses Thema hat 1 Teilnehmer:

p.specht (1x)


Admins  |  AGB  |  Anwendungen  |  Autoren  |  Chat  |  Datenschutz  |  Download  |  Eingangshalle  |  Hilfe  |  Händlerportal  |  Impressum  |  Mart  |  Schnittstellen  |  SDK  |  Services  |  Spiele  |  Suche  |  Support

Ein Projekt aller XProfaner, die es gibt!


Mein XProfan
Private Nachrichten
Eigenes Ablageforum
Themen-Merkliste
Eigene Beiträge
Eigene Themen
Zwischenablage
Abmelden
 Deutsch English Français Español Italia
Übersetzungen

Datenschutz


Wir verwenden Cookies nur als Session-Cookies wegen der technischen Notwendigkeit und bei uns gibt es keine Cookies von Drittanbietern.

Wenn du hier auf unsere Webseite klickst oder navigierst, stimmst du unserer Erfassung von Informationen in unseren Cookies auf XProfan.Net zu.

Weitere Informationen zu unseren Cookies und dazu, wie du die Kontrolle darüber behältst, findest du in unserer nachfolgenden Datenschutzerklärung.


einverstandenDatenschutzerklärung
Ich möchte keinen Cookie