| |
|
|
- Seite 1 - |
|
HofK | Auf einen heißen Tipp von IF hin, habe ich mir mal three.js [...] angeschaut. Da [...] (ganz unten) die ersten Resultate. |
|
|
| |
|
|
| |
|
- Seite 27 - |
|
|
p.specht
| Könnte man einzelne Triangulations-Dreiecke farblich ändern? (Ein Narr kann mehr fragen als 10 Weise beantworten...) |
|
|
| XProfan 11Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'... | 23.09.2019 ▲ |
|
|
|
|
HofK | Auch das habe ich bisher nicht implementiert, ist aber leicht möglich. Im Addon ist es realisiert. [...]
In der Sandbox kann man es probieren. [...]
|
|
|
| |
|
|
|
p.specht
| |
|
| XProfan 11Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'... | 23.09.2019 ▲ |
|
|
|
|
HofK | Der Zylinder mit Löchern und Randanpassung ist fertig. Dank des sehr flexiblen Algorithmus von Prof. E. Hartmann (siehe weiter oben) ist es möglich, fast beliebige Begrenzungen als Front zu definieren und so Formen nach Wunsch zu erzeugen.
Dort ausprobieren [...]
Auf GitHub eine Variante im Addon THREEi [...]
Auf discourse [...]
Man kann die Zylinder zu einer Innengeometrie zusammenfügen.
Dort ausprobieren, den Schieber benutzen! [...]
Wenn man d (ungefähre Seitenlänge der Dreiecke) einheitlich wählt, passen die Kanten perfeckt.
|
|
|
| |
|
|
|
HofK | |
|
| |
|
|
|
p.specht
| Einfach toll! Ist das eine Sichtbarkeits-Ebene, die man da verschiebt, oder die Anzahl der gezeichneten Dreiecke? |
|
|
| XProfan 11Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'... | 08.10.2019 ▲ |
|
|
|
|
HofK | Die 3D Darstellung erfolgt aus internen Gründen ( JavaScript, WebGL, three.js) erst nach vollständiger Berechnung. Außerdem ist das so flott, das man wenig sehen würde, ließe es sich bei der Berechnung darstellen. Der Trick mit dem Schieber ist ein einfaches three.js Feature. In der Animationsschleife kann man die Anzahl der zu zeichnenden Dreiecke variieren.
g.setDrawRange( 0, range.value * 3 * progressFactor );
Jeder Punkt hat 3 Koordinaten, den Faktor kann man festlegen: let progressFactor = 1.1; |
|
|
| |
|
|
|
HofK | |
|
| |
|
|
|
p.specht
| |
|
| XProfan 11Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'... | 09.10.2019 ▲ |
|
|
|
|
HofK | UPDATE zu meinem letzten Beitrag wegen Schusselfehlers!
|
|
|
| |
|
|
|
p.specht
| Die quartische Gleichung löst man am besten per Newton-Raphson-Näherung.
Ansonsten müßte man folgendes Monster kanonisieren, memoisieren und auf komplexe Zahlen erweitern:
x1=-(sqrt((3*(8*a^2*d-4*a*b*c+b^3))/(2*a^2*sqrt((36*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(2/3)+(9*b^2-24*a*c)*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)+48*a*e-12*b*d+4*c^2)/(( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))))-( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)-(12*a*e-3*b*d+c^2)/(9*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))-(2*a*c-b^2)/(2*a^2)-c/(3*a)))/(2)-(sqrt((36*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(2/3)+(9*b^2-24*a*c)*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)+48*a*e-12*b*d+4*c^2)/(( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))))/(12*a)-b/(4*a)
x2=(sqrt((3*(8*a^2*d-4*a*b*c+b^3))/(2*a^2*sqrt((36*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(2/3)+(9*b^2-24*a*c)*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)+48*a*e-12*b*d+4*c^2)/(( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))))-( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)-(12*a*e-3*b*d+c^2)/(9*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))-(2*a*c-b^2)/(2*a^2)-c/(3*a)))/(2)-(sqrt((36*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(2/3)+(9*b^2-24*a*c)*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)+48*a*e-12*b*d+4*c^2)/(( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))))/(12*a)-b/(4*a)
x3=-(sqrt(-(3*(8*a^2*d-4*a*b*c+b^3))/(2*a^2*sqrt((36*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(2/3)+(9*b^2-24*a*c)*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)+48*a*e-12*b*d+4*c^2)/(( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))))-( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)-(12*a*e-3*b*d+c^2)/(9*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))-(2*a*c-b^2)/(2*a^2)-c/(3*a)))/(2)+(sqrt((36*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(2/3)+(9*b^2-24*a*c)*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)+48*a*e-12*b*d+4*c^2)/(( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))))/(12*a)-b/(4*a)
x4=(sqrt(-(3*(8*a^2*d-4*a*b*c+b^3))/(2*a^2*sqrt((36*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(2/3)+(9*b^2-24*a*c)*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)+48*a*e-12*b*d+4*c^2)/(( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))))-( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)-(12*a*e-3*b*d+c^2)/(9*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))-(2*a*c-b^2)/(2*a^2)-c/(3*a)))/(2)+(sqrt((36*a^2*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(2/3)+(9*b^2-24*a*c)*( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3)+48*a*e-12*b*d+4*c^2)/(( sqrt(-256*a^3*e^3-(-192*a^2*b*d-128*a^2*c^2+144*a*b^2*c-27*b^4)*e^2-((144*a^2*c-6*a*b^2)*d^2+(18*b^3*c-80*a*b*c^2)*d+16*a*c^4-4*b^2*c^3)*e+27*a^2*d^4-(18*a*b*c-4*b^3)*d^3-(b^2*c^2-4*a*c^3)*d^2)/(2*3^(3/2)*a^3) -(a*(72*c*e-27*d^2)-27*b^2*e+9*b*c*d-2*c^3)/(54*a^3))^(1/3))))/(12*a)-b/(4*a)]
Das lassen wir aber hübsch bleiben. Gruss |
|
|
| Computer: Gerät, daß es in Mikrosekunden erlaubt, 50.000 Fehler zu machen, zB 'daß' statt 'das'... | 10.10.2019 ▲ |
|
|
|
|
HofK | |
|
| |
|
|